scholarly journals Autonomous Navigation of a Team of Unmanned Surface Vehicles for Intercepting Intruders on a Region Boundary

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 297
Author(s):  
Ali Marzoughi ◽  
Andrey V. Savkin

We study problems of intercepting single and multiple invasive intruders on a boundary of a planar region by employing a team of autonomous unmanned surface vehicles. First, the problem of intercepting a single intruder has been studied and then the proposed strategy has been applied to intercepting multiple intruders on the region boundary. Based on the proposed decentralised motion control algorithm and decision making strategy, each autonomous vehicle intercepts any intruder, which tends to leave the region by detecting the most vulnerable point of the boundary. An efficient and simple mathematical rules based control algorithm for navigating the autonomous vehicles on the boundary of the see region is developed. The proposed algorithm is computationally simple and easily implementable in real life intruder interception applications. In this paper, we obtain necessary and sufficient conditions for the existence of a real-time solution to the considered problem of intruder interception. The effectiveness of the proposed method is confirmed by computer simulations with both single and multiple intruders.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
John Khoury ◽  
Kamar Amine ◽  
Rima Abi Saad

This paper investigates the potential changes in the geometric design elements in response to a fully autonomous vehicle fleet. When autonomous vehicles completely replace conventional vehicles, the human driver will no longer be a concern. Currently, and for safety reasons, the human driver plays an inherent role in designing highway elements, which depend on the driver’s perception-reaction time, driver’s eye height, and other driver related parameters. This study focuses on the geometric design elements that will directly be affected by the replacement of the human driver with fully autonomous vehicles. Stopping sight distance, decision sight distance, and length of sag and crest vertical curves are geometric design elements directly affected by the projected change. Revised values for these design elements are presented and their effects are quantified using a real-life scenario. An existing roadway designed using current AASHTO standards has been redesigned with the revised values. Compared with the existing design, the proposed design shows significant economic and environmental improvements, given the elimination of the human driver.


Author(s):  
Chang Wang ◽  
Xia Zhao ◽  
Rui Fu ◽  
Zhen Li

Comfort is a significant factor that affects passengers’ choice of autonomous vehicles. The comfort of an autonomous vehicle is largely determined by its control algorithm. Therefore, if the comfort of passengers can be predicted based on factors that affect comfort and the control algorithm can be adjusted, it can be beneficial to improve the comfort of autonomous vehicles. In view of this, in the present study, a human-driven experiment was carried out to simulate the typical driving state of a future autonomous vehicle. In the experiment, vehicle motion parameters and the comfort evaluation results of passengers with different physiological characteristics were collected. A single-factor analysis method and binary logistic regression analysis model were used to determine the factors that affect the evaluation results of passenger comfort. A passenger comfort prediction model was established based on the bidirectional long short-term memory network model. The results demonstrate that the accuracy of the passenger comfort prediction model reached 84%, which can provide a theoretical basis for the adjustment of the control algorithm and path trajectory of autonomous vehicles.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5706
Author(s):  
Sanghoon Lee ◽  
Dongkyu Lee ◽  
Pyung Choi ◽  
Daejin Park

Light detection and ranging (LiDAR) sensors help autonomous vehicles detect the surrounding environment and the exact distance to an object’s position. Conventional LiDAR sensors require a certain amount of power consumption because they detect objects by transmitting lasers at a regular interval according to a horizontal angular resolution (HAR). However, because the LiDAR sensors, which continuously consume power inefficiently, have a fatal effect on autonomous and electric vehicles using battery power, power consumption efficiency needs to be improved. In this paper, we propose algorithms to improve the inefficient power consumption of conventional LiDAR sensors, and efficiently reduce power consumption in two ways: (a) controlling the HAR to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle’s speed and (b) reducing the static power consumption using a sleep mode, depending on the surrounding environment. The proposed LiDAR sensor with the HAR control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle’s speed, compared to the maximum number of laser transmissions (Nx.max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The algorithm of the proposed LiDAR sensor was tested on a commercial processor chip, and the integrated processor was designed as an IC using the Global Foundries 55 nm CMOS process.


2018 ◽  
Author(s):  
Igor Radun ◽  
Jenni Radun ◽  
Jyrki Kaistinen ◽  
Jake Olivier ◽  
Göran Kecklund ◽  
...  

Unlike hypothetical trolley problem studies and an ongoing ethical dilemma with autonomous vehicles, road users can face similar ethical dilemmas in real life. Swerving a heavy vehicle towards the road-side in order to avoid a head-on crash with a much lighter passenger car is often the only option available which could save lives. However, running off-road increases the probability of a roll-over and endangers the life of the heavy vehicle driver. We have created an experimental survey study in which heavy vehicle drivers randomly received one of two possible scenarios. We found that responders were more likely to report they would ditch their vehicle in order to save the hypothetical driver who fell asleep than to save the driver who deliberately diverted their car towards the participant’s heavy vehicle. Additionally, the higher the empathy score, the higher the probability of ditching a vehicle. Implications for autonomous vehicle programming are discussed.


2021 ◽  
Vol 55 (5) ◽  
pp. 2739-2762
Author(s):  
Ali Ghomi ◽  
Saeid Ghobadi ◽  
Mohammad Hassan Behzadi ◽  
Mohsen Rostamy-Malkhalifeh

The inverse Data Envelopment Analysis (InvDEA) is an exciting and significant topic in the DEA area. Also, uncertain data in various real-life applications can degrade the efficiency results. The current work addresses the InvDEA in the presence of stochastic data. Under maintaining the efficiency score, the inputs/outputs-estimation problem is investigated when some or all of its outputs/inputs increase. A novel optimality concept for multiple-objective programming problems, stochastic (weak) Pareto optimality in the level of significance α ∈[0,1], is introduced to derive necessary and sufficient conditions for input/output estimation. Furthermore, the performance of the developed theory in a banking sector application is verified.


Author(s):  
Subbulakshmi T. ◽  
Balaji N.

This article presents the platform for autonomous vehicle architecture, navigation optimization and mobility services. The basic approach is to develop an intelligent agent to create a safety journey and redefine the world of transportation. The goal is to eliminate human driving errors and save human life from accidents. AI robots are a concept of future transportation with full automation and self-learning. Velodyne laser sensors are used for obstacle detection and autonomous navigation of ground vehicles and to create 3D images of the surround so that navigation and controls are optimized. In this article, existing system accessibility will be optimized by multiple features. The agent accessibility is improved, and users can access the vehicles through different ways like mobile apps, speech recognition and gestures. This article concentrates on the mobility services of autonomous vehicles.


Author(s):  
Heungseok Chae ◽  
Yonghwan Jeong ◽  
Hojun Lee ◽  
Jongcherl Park ◽  
Kyongsu Yi

This article describes the design, implementation, and evaluation of an active lane change control algorithm for autonomous vehicles with human factor considerations. Lane changes need to be performed considering both driver acceptance and safety with surrounding vehicles. Therefore, autonomous driving systems need to be designed based on an analysis of human driving behavior. In this article, manual driving characteristics are investigated using real-world driving test data. In lane change situations, interactions with surrounding vehicles were mainly investigated. And safety indices were developed with kinematic analysis. A safety indices–based lane change decision and control algorithm has been developed. In order to improve safety, stochastic predictions of both the ego vehicle and surrounding vehicles have been conducted with consideration of sensor noise and model uncertainties. The desired driving mode is decided to cope with all lane changes on highway. To obtain desired reference and constraints, motion planning for lane changes has been designed taking stochastic prediction-based safety indices into account. A stochastic model predictive control with constraints has been adopted to determine vehicle control inputs: the steering angle and the longitudinal acceleration. The proposed active lane change algorithm has been successfully implemented on an autonomous vehicle and evaluated via real-world driving tests. Safe and comfortable lane changes in high-speed driving on highways have been demonstrated using our autonomous test vehicle.


2018 ◽  
Vol 27 ◽  
pp. 103-110
Author(s):  
Viorel Stoian

The domain of autonomous vehicles is of great interest to researchers and engineers and much has been performed in this field. The paper proposes a fuzzy control algorithm for autonomous electric vehicles which are moving next to the obstacle (object) boundaries, avoiding the collisions with them (a “guard motion”). Four motion cycles (programs) which depend of the proximity levels and which are used by the vehicle on its trajectory are described. The directions of the movements corresponding to every cycle and for every reached neighbourhood level are indicated. The sequence of the programs and the conditions of their alternation are shown. The motion control algorithm describes the sequence of the functional cycles by a schernatic program code. The fuzzy rules for evolution (transition) of the cycles and for the motion on x-axis and y-axis respectively are expounded. Finally, some simulations are represented.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chih-Te Yang ◽  
Liang-Yuh Ouyang ◽  
Chang-Hsien Hsu ◽  
Kuo-Liang Lee

This paper extends the previous economic order quantity (EOQ) models under two-level trade credit such as Goyal (1985), Teng (2002), Huang (2003, 2007), Kreng and Tan (2010), Ouyang et al. (2013), and Teng et al. (2007) to reflect the real-life situations by incorporating the following concepts: (1) the storage capacity is limited, (2) the supplier offers the retailer a partially upstream trade credit linked to order quantity, and (3) both the dispensable assumptions that the upstream trade credit is longer than the downstream trade creditN<Mand the interest charged per dollar per year is larger than or equal to the interest earned per dollar per yearIc<Ieare relaxed. We then study the necessary and sufficient conditions for finding the optimal solution for various cases and establish a useful algorithm to obtain the solution. Finally, numerical examples are given to illustrate the theoretical results and provide the managerial insights.


2017 ◽  
Vol 13 (4) ◽  
pp. 576-580
Author(s):  
Ibrahim Gambo ◽  
Nor Haniza Sarmin ◽  
Hidayat Ullah Khan ◽  
Muhammad Faiz Khan

The advancement in the fascinating area of fuzzy set theory has become area of much interest, generalization of the existing fuzzy subsystems of other algebraic structures is very important to tackle more current real life problems. In this paper, we give more generalized form of regular ordered gamma semigroups in terms of (E,EVq_k)-fuzzy gamma ideals. Particularly, we characterized left regular, right regular, simple and completely regular ordered gamma semigroups in terms of this new notion. Some necessary and sufficient conditions for ordered gamma semigroup to be completely regular are provided in this paper.


Sign in / Sign up

Export Citation Format

Share Document