scholarly journals Design, Validation and Comparison of Path Following Controllers for Autonomous Vehicles

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6052
Author(s):  
Xing Yang ◽  
Lu Xiong ◽  
Bo Leng ◽  
Dequan Zeng ◽  
Guirong Zhuo

As one of the core issues of autonomous vehicles, vehicle motion control directly affects vehicle safety and user experience. Therefore, it is expected to design a simple, reliable, and robust path following the controller that can handle complex situations. To deal with the longitudinal motion control problem, a speed tracking controller based on sliding mode control with nonlinear conditional integrator is proposed, and its stability is proved by the Lyapunov theory. Then, a linear parameter varying model predictive control (LPV-MPC) based lateral controller is formulated that the optimization problem is solved by CVXGEN. The nonlinear active disturbance rejection control (ADRC) method is applied to the second lateral controller that is easy to be implemented and robust to parametric uncertainties and disturbances, and the pure pursuit algorithm serves as a benchmark. Simulation results in different scenarios demonstrate the effectiveness of the proposed control schemes, and a comparison is made to highlight the advantages and drawbacks. It can be concluded that the LPV-MPC has some trouble to handle uncertainties while the nonlinear ADRC performs slight worse tracking but has strong robustness. With the parallel development of the control theory and computing power, robust MPC may be the future direction.

Robotica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 118-135 ◽  
Author(s):  
Raouf Fareh ◽  
Mohammad Al-Shabi ◽  
Maamar Bettayeb ◽  
Jawhar Ghommam

SummaryThis paper presents an advanced robust active disturbance rejection control (ADRC) for flexible link manipulator (FLM) to track desired trajectories in the joint space and minimize the link’s vibrations. It has been shown that the ADRC technique has a very good disturbance rejection capability. Both the internal dynamics and the external disturbances can be estimated and compensated in real time. The proposed robust ADRC control law is developed to solve the problems existing in the original version of the ADRC related to the disturbance estimation errors and the variation of the parameters. Indeed, these parameters cannot be included in the existing disturbances and then be estimated by the extended state observer. The proposed control law is based on the sliding mode technique, which considers the uncertainties in the control gains and disturbance estimation errors. Lyapunov theory is used to prove the closed-loop stability of the system. The proposed control strategy is simulated and tested experimentally on one FLM. The effect of the observer bandwidth on the system performance is simulated and studied to select the best values of the bandwidth frequency. The simulation and experimental results show that the proposed robust ADRC has better performance than the traditional ADRC.


2013 ◽  
Vol 709 ◽  
pp. 583-588
Author(s):  
Jin Hua Ye ◽  
Di Li ◽  
Shi Yong Wang ◽  
Feng Ye

This paper develops a high performance guidance controller for automated guided vehicle (AGV) with nonholonomic constraint. In this controller, the path following method in the Serret-Frenet frame is used for driving the AGV onto a predefined path at a constant forward speed. Moreover, a first order dynamic sliding mode controller is proposed, not only to overcome the impact of unknown model uncertainties and external disturbances of the system, but also to weaken the chattering in the standard sliding mode control. The global asymptotic stability and robustness of the system is proven by the Lyapunov theory and LaSalles invariance principle. Simulation results show the validity of the proposed guidance control scheme.


Author(s):  
Haitong Xu ◽  
M. A. Hinostroza ◽  
C. Guedes Soares

Abstract This paper presents a time-varying vector field guidance law for path-following control of underactuated autonomous vehicles. The proposed guidance law employs a time-varying equation to calculate the desired heading angle. A sliding mode controller is designed to track the desired heading angle, and it is proved to be globally exponentially stable (GES). With this controller, the stability proof for guidance system is presented and the equilibrium point of the guidance system is Uniform Global Asymptotic Stable (UGAS). In order to avoid the obstacle when ship approaching the predefined path, a combined Path-following and repelling field based obstacle avoidance system is proposed in this paper. Simulations are carried out to validate the performance of the combined path-following and collision avoidance system.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ronghui Li ◽  
Tieshan Li ◽  
Renxiang Bu ◽  
Qinling Zheng ◽  
C. L. Philip Chen

The compound control of active-disturbance-rejection control (ADRC) with sliding mode is proposed to improve the performance of the closed-loop system and deal with the constraint condition problem of a surface ship. The advantages of ADRC with sliding mode were verified by ship course control simulations. Meanwhile, to solve the path-following problem of underactuated surface ships with uncertainties of internal dynamic and external disturbances, the ADRC controller with sliding mode is introduced to steer the ship to follow the desired path. In order to overcome the cross-track error caused by wind and current, drift angle is compensated in the controller by designing a coordinate transformation equation. Simulations were performed on a nonlinear kinematics model of a training ship to validate the stability and excellent robustness of the proposed path-following controller.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Chen ◽  
Yifei Wu ◽  
Renhui Du ◽  
Qingwei Chen ◽  
Xiaobei Wu

Dual-motor systems have been widely used in industrial applications, and speed synchronization of the motors can always be deteriorated by system parameter uncertainties and load torque perturbations. In this paper, a new robust control strategy for the dual-motor systems is developed by incorporating second order sliding mode control (2-SMC) techniques. The strategy is to design chatting-free control laws to stabilize speed tracking of each motor while synchronizing their velocity. In the proposed scheme, firstly, speed controller for a single motor is designed to eliminate the effects of system parameter variations and load torque perturbations. Secondly, a cross-coupled architecture based synchronous controller is designed to reduce speed error of the motors caused by characteristic inconsistency and unbalanced load torque. Stability of the closed loop system is analyzed by Lyapunov theory; it is proven that both speed tracking errors and synchronous error can converge to zero. Finally, experiments are performed to examine the effectiveness of the developed controllers. Experimental results will show the good performance of the proposed control scheme.


Optik ◽  
2016 ◽  
Vol 127 (20) ◽  
pp. 9118-9130 ◽  
Author(s):  
Jian Yang ◽  
Jin-fu Feng ◽  
Duo Qi ◽  
Yong-li Li

Sign in / Sign up

Export Citation Format

Share Document