Time-Dependent Cyclic Behavior of an Aluminum Alloy at Room Temperature

1989 ◽  
pp. 239-242
Author(s):  
K. Kawashima ◽  
T. Ito ◽  
T. Saito ◽  
N. Isomura
2013 ◽  
Vol 48 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Guangyu YANG ◽  
Hongshuai MENG ◽  
Shaojun LIU ◽  
Yuanhao QI ◽  
Wanqi JIE

2021 ◽  
Author(s):  
Jian Qu ◽  
Xin Zhang ◽  
Zhong-Jie Wang ◽  
Shuyan Zhang ◽  
Yejian Yu ◽  
...  

Time-dependent evolutive afterglow materials can increase the security level by providing additional encryption modes in anti-counterfeiting and data encryption. The design of carbon-based materials with dynamic afterglow colors is attractive...


2011 ◽  
Vol 291-294 ◽  
pp. 1039-1042
Author(s):  
Wei Xie ◽  
Shao Wei Tu ◽  
Qi Qing Huang ◽  
Ya Zhi Li

In the present work, the resistance to crack extension of 2524-T3 aluminum alloy under Mode I loading was studied by using the middle-cracked tension M (T) specimens. The curve, plane-stress fracture toughness and apparent plane-stress fracture toughness were calculated by test data. The average value of measured fracture toughness at room temperature was 161 MPam1/2. The results and conclusions can be referred in airplane skin design.


2005 ◽  
Vol 488-489 ◽  
pp. 287-290 ◽  
Author(s):  
Tadayoshi Tsukeda ◽  
Ken Saito ◽  
Mayumi Suzuki ◽  
Junichi Koike ◽  
Kouichi Maruyama

We compared the newly developed heat resistant magnesium alloy with conventional ones by Thixomolding® and aluminum alloy by die casting. Tensile properties at elevated temperatures of AXEJ6310 were equal to those of ADC12. In particular, elongation tendency of AXEJ6310 at higher temperature was better than those of the other alloys. Creep resistance of AXEJ6310 was larger than that of AE42 by almost 3 orders and smaller than that of ADC12 by almost 2 orders of magnitude. Fatigue limits at room temperature and 423K of AXEJ6310 was superior among conventional magnesium alloys.


1982 ◽  
Vol 30 (4) ◽  
pp. 317-322 ◽  
Author(s):  
R E Cunningham ◽  
K S Skramstad ◽  
A E Newburger ◽  
S E Shackney

Ethanol-fixed cells stored at 4 degrees C exhibit fixation time-dependent hyperchromatism in comparison with freshly fixed cells when stained with mithramycin and examined by flow cytometry. This hyperchromatism has been found to be temperature-dependent, developing fully within 72 hr at room temperature, and within 2 hr at 37 degrees C. Cells from normal donors that are stained with mithramycin exhibit spurious aneuploid peaks. These spurious aneuploid peaks can be eliminated by incubating ethanol-fixed cells at 37 degrees C for 2 hr prior to staining; true aneuploidy is not affected by this procedure. In rare instances, cytoplasmic fluorescence can be observed in mithramycin-stained cells. In addition, unexplained hypochromatism and hyperchromatism can be observed in some clinical samples, particularly in human melanoma. The effects of these unexplained staining artifacts can be minimized or eliminated by adopting strict criteria for the clinical detection of aneuploidy by flow cytometry.


Author(s):  
Khaleel Abushgair

Purpose. To conduct an experimental study on M102 aluminum alloy bulk content characterization under cyclic loadings for precision applications such as balance machines, optical, and laser instruments. M102 (AL-C-O) dispersion-reinforced aluminum alloy was chosen because of its ability to withstand temperatures beyond 200C and has a better strength than precipitation-hardened Al alloys at room temperature. A CNC milling machine is used to manufacture test samples with longitudinal machining directions. A constant time interval is set for the fabric a quarter-hour span, which is based on the investigation of inelastic and plastic deformations in the nanoscale. Methodology. An electromagnetic test instrument applies a tensile stress range of 10 to 145 N/mm2 to samples with particular shape. It should be noted that interferometers and capacitive sensors were used to measure all forms of deformations with and without loading. The experiments are carried out in a temperature-stable environment of 30.5 C; measurements are taken within a residual strain range of 10 microns. Findings. The results obtained show that results for inelastic deformations for samples of longitudinal cuts direction at 30.5 C were measured under 150 N/mm2 stress as 500 nm inelastic deformation and 100 nm plastic deformation were measured, which is much higher than aluminum alloy studied before at room temperature (20 C). Furthermore, it was found that the time constant of the M102 (ALCO) aluminum alloy samples was double times higher than that for other samples, Originality. For the first time, a study has been conducted on inelastic and plastic deformations in the nanoscale for characterization of M102 aluminum alloy bulk content under cyclic loadings for precision applications. Practical value. One of the main factors affecting the using of other materials than steel in precision applications such as balance machines, optical, and laser instruments is measurement and determination of inelastic, plastic and time constant of the process of delamination of materials of different aluminum alloys since they are nonmagnetic, are easily machined and shaped. This will bring new products and opportunities for these materials.


Sign in / Sign up

Export Citation Format

Share Document