Integral Solutions of the Wave Equation with Boundary and Initial Value Conditions

2014 ◽  
pp. 107-134
Author(s):  
Wencai Yang
1984 ◽  
Vol 27 (2) ◽  
pp. 223-228 ◽  
Author(s):  
Franca Franchi

In this paper, we study the boundary-initial value problem for a linear elastic body ina bounded domain, when the body force depends on the displacement vector u in asublinear way.Recently, much attention has been given to nonlinear body forces not only to studythe fundamental solutions of the equations governing linear elastodynamics, see e.g.Kecs [3], but also to derive global non existence results in abstract problems with directapplications to nonlinear heat diffusion or to the nonlinear wave equation, see e.g. Ball[1], Levine and Payne [10].


2020 ◽  
Vol 20 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Suzhen Jiang ◽  
Kaifang Liao ◽  
Ting Wei

AbstractIn this study, we consider an inverse problem of recovering the initial value for a multi-dimensional time-fractional diffusion-wave equation. By using some additional boundary measured data, the uniqueness of the inverse initial value problem is proven by the Laplace transformation and the analytic continuation technique. The inverse problem is formulated to solve a Tikhonov-type optimization problem by using a finite-dimensional approximation. We test four numerical examples in one-dimensional and two-dimensional cases for verifying the effectiveness of the proposed algorithm.


Author(s):  
Eiichi Matsunaga ◽  
◽  
Tomomasa Ohkubo

Japan is an island nation that experiences frequent earthquakes. When an earthquake occurs, it is important to forecast its resultant tsunami: its size, location, time of arrival, etc. These forecasts are made using numerical simulations. The initial conditions are very important for numerical simulations, but the small number of tide stations makes it difficult to make highly precise forecasts. The distance between stations is normally several tens of km, and this lowers the precision of the initial data afforded by them. It is therefore common to use data interpolated from the sparse observation data at timet=0. Even so, high-resolution interpolation cannot be expected since the original data is of poor quality. In addition, the interpolated values may not be physically valid because the governing equation may not have been considered when the data were interpolated. We therefore propose a new method of estimating the initial value by using a characteristic equation. In this method, we replace the spatial resolution with time resolution. This results in a high-resolution initial value because the same place is measured more than once. In addition, the characteristic equation is based on the governing equation. Therefore, in this method, an accurate estimation of initial value is considered to be possible. In this paper, we show two applications of this approach, one for a dimensional shallow water wave equation and one for Euler’s equation. The shallow water wave equation is for the tsunami, and the Euler equation is the governing equation of the numerical weather forecast.


2018 ◽  
Vol 2019 (21) ◽  
pp. 6797-6817
Author(s):  
Benjamin Dodson

Abstract In this paper we study the defocusing, cubic nonlinear wave equation in three dimensions with radial initial data. The critical space is $\dot{H}^{1/2} \times \dot{H}^{-1/2}$. We show that if the initial data is radial and lies in $\left (\dot{H}^{s} \times \dot{H}^{s - 1}\right ) \cap \left (\dot{H}^{1/2} \times \dot{H}^{-1/2}\right )$ for some $s> \frac{1}{2}$, then the cubic initial value problem is globally well-posed. The proof utilizes the I-method, long time Strichartz estimates, and local energy decay. This method is quite similar to the method used in [11].


In this paper a detailed study is made of solutions of the differential equation ∂ 2 ϕ /∂ R 2 + k/R ∂ ϕ /∂ R – ∂ 2 ϕ /∂ T 2 = 0 in the quarter plane R ≽ 0, T ≽ 0. The boundary value problem considered is that of finding a solution which satisfies Cauchy data on T = 0. The contour integral solutions developed for an equation occurring in gas dynamics, shown to be equivalent to that considered here, are the main aid in the investigation. The solution is obtained first for values of T ≼ R but is continued into the whole quarter plane. This continuation follows from a fundamental uniqueness result that knowledge of ϕ on the characteristic R = T specifies its value in the domain R ≼ T . A point emphasized is that the continuation is not in general the analytic continuation from the domain T ≼ R , even for analytic initial data. Different interpretations of the solutions found are examined. When k is a positive integer the equation is that satisfied by radially symmetric solutions of the wave equation in k + 1 space dimensions, and this leads to the solution of the full wave equation for given initial conditions on T = 0. The Huygens principle is clearly illustrated. For general positive values of k the discussion clarifies a problem in gas dynamics in the study of which the original contour integral solutions were first devised. The general solution is also compared with a solution by separation of variables, and some conclusions are drawn regarding certain infinite integrals involving Bessel functions. In the final section negative values of k are considered. The contour integral representation solves in a concise form the singular initial value problem of finding a solution which takes prescribed values on R = 0, thus generalizing a result well known for positive value of k .


Sign in / Sign up

Export Citation Format

Share Document