Clostridial neurotoxins

Author(s):  
Bernard Poulain ◽  
Jordi Molgó ◽  
Michel R. Popoff
2000 ◽  
Vol 68 (5) ◽  
pp. 2587-2593 ◽  
Author(s):  
John A. Chaddock ◽  
John R. Purkiss ◽  
Lorna M. Friis ◽  
Janice D. Broadbridge ◽  
Michael J. Duggan ◽  
...  

ABSTRACT Clostridial neurotoxins potently and specifically inhibit neurotransmitter release in defined cell types by a mechanism that involves cleavage of specific components of the vesicle docking/fusion complex, the SNARE complex. A derivative of the type A neurotoxin fromClostridium botulinum (termed LHN/A) that retains catalytic activity can be prepared by proteolysis. The LHN/A, however, lacks the putative native binding domain (HC) of the neurotoxin and is thus unable to bind to neurons and effect inhibition of neurotransmitter release. Here we report the chemical conjugation of LHN/A to an alternative cell-binding ligand, wheat germ agglutinin (WGA). When applied to a variety of cell lines, including those that are ordinarily resistant to the effects of neurotoxin, WGA-LHN/A conjugate potently inhibits secretory responses in those cells. Inhibition of release is demonstrated to be ligand mediated and dose dependent and to occur via a mechanism involving endopeptidase-dependent cleavage of the natural botulinum neurotoxin type A substrate. These data confirm that the function of the HC domain of C. botulinumneurotoxin type A is limited to binding to cell surface moieties. The data also demonstrate that the endopeptidase and translocation functions of the neurotoxin are effective in a range of cell types, including those of nonneuronal origin. These observations lead to the conclusion that a clostridial endopeptidase conjugate that can be used to investigate SNARE-mediated processes in a variety of cells has been successfully generated.


1998 ◽  
Vol 9 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
Thierry Galli ◽  
Ahmed Zahraoui ◽  
Vadakkanchery V. Vaidyanathan ◽  
Graça Raposo ◽  
Jian Min Tian ◽  
...  

The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.


1993 ◽  
pp. 345-360 ◽  
Author(s):  
Bernard Poulain ◽  
Ulrich Weller ◽  
Thomas Binz ◽  
Heiner Niemann ◽  
Anton de Paiva ◽  
...  

1999 ◽  
Vol 354 (1381) ◽  
pp. 379-386 ◽  
Author(s):  
M. Atiqur Rahman ◽  
Anthony C. Ashton ◽  
Frédéric A. Meunier ◽  
Bazbek A. Davletov ◽  
J. Oliver Dolly ◽  
...  

α–latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G–protein–coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin–G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with Gα q/11 and Gα o but not with Gα s , Gα i or Gα z , indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX–evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca 2+ , LTX triggers vesicular exocytosis because botulinum neurotoxins E, C1 or tetanus toxin inhibit the Ca 2+ –dependent component of the toxin–evoked release. Based on (i) the known involvement of Gα q in the regulation of inositol–1,4,5–triphosphate generation and (ii) the requirement of Ca 2+ in LTX action, we tested the effect of inhibitors of Ca 2+ mobilization on the toxin–evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca 2+ –dependent toxin's action. Thapsigargin, which depletes intracellular Ca 2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca 2+ . On the other hand, clostridial neurotoxins or drugs interfering with Ca 2+ metabolism do not inhibit the Ca 2+ –independent component of LTX–stimulated release. In the absence of Ca 2+ , the toxin induces in the presynaptic membrane non–selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca 2+ provided intracellular Ca 2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca 2+ , which then triggers secretion.


Sign in / Sign up

Export Citation Format

Share Document