Stream-Riparian Ecosystems and Mixed- and High-Severity Fire

Author(s):  
Breeanne K. Jackson ◽  
S. Mažeika P. Sullivan ◽  
Colden V. Baxter ◽  
Rachel L. Malison
2020 ◽  
Vol 29 (7) ◽  
pp. 611
Author(s):  
Breeanne K. Jackson ◽  
S. Mažeika P. Sullivan

Fires are a common feature of many landscapes, with numerous and complex ecological consequences. In stream ecosystems, fire can strongly influence fluvial geomorphic characteristics and riparian vegetation, which are structural components of stream–riparian ecosystems that contribute to biodiversity and ecosystem function. However, the effects of fire severity on stream–riparian ecosystems in California’s Sierra Nevada region (USA) are not well described, yet critical for effectively informing fire management and policy. At 12 stream reaches paired by fire severity (one high-severity burned, one low-severity burned), no significant differences were found in riparian plant community cover and composition or stream geomorphic characteristics 2–15 years following wildfire. In addition, minimal changes in riparian vegetation and stream geomorphic properties were observed in the first summer following the extensive and severe Rim Fire. However, an upstream-to-downstream influence of multiple fire occurrences was observed over the previous 81 years within each catchment on stream geomorphic metrics, including sediment size, embeddedness and channel geometry, at our study reaches. The inconsistent effects of wildfire on stream–riparian vegetation and geomorphic characteristics over space and time may be related to time since fire and precipitation.


1989 ◽  
Vol 7 (2) ◽  
pp. 60-64 ◽  
Author(s):  
Kathryn Baird

Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 496
Author(s):  
Grace L. Parikh ◽  
Christopher R. Webster

Ungulate herbivory occurring within a forest plant community’s natural range of variation may help maintain species diversity. However, acute or chronically elevated levels of herbivory can produce dramatic changes in forest communities. For example, chronically high levels of herbivory by white-tailed deer (Odocoileus virginianus Zimmerman) in regions of historically low abundance at northern latitudes have dramatically altered forest community composition. In eastern hemlock (Tsuga canadensis L. Carrière) stands where deer aggregate during winter, high deer use has been associated with a shift towards deciduous species (i.e., maples [Acer spp.]) dominating the regeneration layer. Especially harsh winters can lead to deer population declines, which could facilitate regeneration of species that have been suppressed by browsing, such as hemlock. To enhance our understanding of how fluctuations in herbivory influence regeneration dynamics, we surveyed regeneration and deer use in 15 relict hemlock stands in the western Upper Peninsula of Michigan in 2007 and again in 2015. With the exception of small seedlings (0.04–0.24 m height), primarily maples whose abundance increased significantly (p < 0.05), we observed widespread significant declines (p < 0.05) in the abundance of medium (0.25 ≤ 1.4 m height) and large regeneration (>1.4 m tall ≤ 4 cm diameter at breast height) over the study period. Midway through our study period, the region experienced a high severity winter (i.e., “polar vortex”) which resulted in a substantial decline in the white-tailed deer population. Given the dominance of maples and dearth of hemlock in the seedling layer, the decline in the deer population may fail to forestall or possibly hasten the trend towards maple dominance of the regeneration layer as these stands recover from pulses of acute herbivory associated with high-severity winters and the press of chronically high herbivory that precedes them.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessie M. Dodge ◽  
Eva K. Strand ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
Darcy H. Hammond ◽  
...  

Abstract Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire. Results One-year post-fire burn severity (dNBR) was lower in treated than in untreated sites across the Egley Fire Complex. Annual NBR trends showed that treated sites nearly recovered to pre-fire values four years post fire, while untreated sites had a slower recovery rate. Time since treatment and dNBR significantly predicted tree canopy and understory green vegetation cover in 2008, suggesting that tree canopy and understory vegetation cover increased in areas that were treated recently pre fire. Live tree density was more affected by severity than by pre-fire treatment in either year, as was dead tree density one year post fire. In 2008, neither treatment nor severity affected percent cover of functional groups (shrub, graminoid, forb, invasive, and moss–lichen–fungi); however, by 2016, shrub, graminoid, forb, and invasive cover were higher in high-severity burn sites than in low-severity burn sites. Total fuel loads nine years post fire were higher in untreated, high-severity burn sites than any other sites. Tree canopy cover and density of trees, saplings, and seedlings were lower nine years post fire than one year post fire across treatments and severity, whereas live and dead tree basal area, understory surface cover, and fuel loads increased. Conclusions Pre-fire fuel treatments effectively lowered the occurrence of high-severity wildfire, likely due to successful pre-fire tree and sapling density and surface fuels reduction. This study also quantified the changes in vegetation and fuels from one to nine years post fire. We suggest that low-severity wildfire can meet prescribed fire management objectives of lowering surface fuel accumulations while not increasing overstory tree mortality.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 877
Author(s):  
Rachel M. Durben ◽  
Faith M. Walker ◽  
Liza Holeski ◽  
Arthur R. Keith ◽  
Zsuzsi Kovacs ◽  
...  

The North American beaver (Castor canadensis Kuhl) and cottonwoods (Populus spp.) are foundation species, the interactions of which define a much larger community and affect a threatened riparian habitat type. Few studies have tested the effect of these interactions on plant chemistry and a diverse arthropod community. We experimentally examined the impact of beaver foraging on riparian communities by first investigating beaver food preferences for one cottonwood species, Fremont cottonwood (P. fremontii S. Watson), compared to other locally available woody species. We next examined the impact of beaver foraging on twig chemistry and arthropod communities in paired samples of felled and unfelled cottonwood species in northern Arizona (P. fremontii) and southwestern Colorado (narrowleaf cottonwood, P. angustifolia James, and Eastern cottonwood, P. deltoides W. Bartram ex Marshall). Four major patterns emerged: (1) In a cafeteria experiment, beavers chose P. fremontii six times more often than other woody native and exotic species. (2) With two cottonwood species, we found that the nitrogen and salicortin concentrations were up to 45% greater and lignin concentration 14% lower in the juvenile resprout growth of felled trees than the juvenile growth on unfelled trees (six of seven analyses were significant for P. fremontii and four of six were significant for P. angustifolia). (3) With two cottonwood species, arthropod community composition on juvenile branches differed significantly between felled and unfelled trees, with up to 38% greater species richness, 114% greater relative abundance and 1282% greater species diversity on felled trees (six of seven analyses with P. fremontii and four of six analyses with P. angustifolia were significant). The above findings indicate that the highest arthropod diversity is achieved in the heterogenous stands of mixed felled and unfelled trees than in stands of cottonwoods, where beavers are not present. These results also indicate that beaver herbivory changes the chemical composition in 10 out of 13 chemical traits in the juvenile growth of two of the three cottonwood species to potentially allow better defense against future beaver herbivory. (4) With P. deltoides, only one of five analyses in chemistry was significant, and none of the four arthropod community analyses were significant, suggesting that this species and its arthropod community responds differently to beaver. Potential reasons for these differences are unknown. Overall, our findings suggest that in addition to their impact on riparian vegetation, other mammals, birds, and aquatic organisms, beavers also may define the arthropod communities of two of three foundation tree species in these riparian ecosystems.


2021 ◽  
Vol 125 ◽  
pp. 107510
Author(s):  
Márcia Isabel Käffer ◽  
Renan Kauê Port ◽  
João B.G. Brito ◽  
Jairo Lizandro Schmitt

Sign in / Sign up

Export Citation Format

Share Document