Implications of biofuel production on direct and indirect land use change: Evidence from Brazil

Author(s):  
Amani Elobeid ◽  
Marcelo M.R. Moreira ◽  
Cicero Zanetti de Lima ◽  
Miguel Carriquiry ◽  
Leila Harfuch
2012 ◽  
Vol 9 (71) ◽  
pp. 1105-1119 ◽  
Author(s):  
Susan Tarka Sanchez ◽  
Jeremy Woods ◽  
Mark Akhurst ◽  
Matthew Brander ◽  
Michael O'Hare ◽  
...  

The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.


2011 ◽  
pp. 224-228
Author(s):  
Uwe Lahl

The study proposes a regional approach to calculating indirect land use change (iLUC). The goal is to determine the greenhouse gas emissions (GHG) of biofuels brought about by iLUC in a specific region. A regional approach can be based on the conditions specific to the respective region and the data for this region which is contained in country statistics. This makes the results more resilient. It also appears that LUC is mainly caused locally or regionally. Relevant policy scenarios for different regions were calculated with a regional model. The calculations show reliable results. It is possible to introduce such a regional model in regulations for combating iLUC. The analysis of the policy options for combating iLUC shows that a regional approach would have a much more effective steering effect.


2017 ◽  
Vol 7 (1) ◽  
pp. e00125 ◽  
Author(s):  
Andrea Nocentini ◽  
John Field ◽  
Andrea Monti ◽  
Keith Paustian

2019 ◽  
Vol 11 (4) ◽  
pp. 1162 ◽  
Author(s):  
Claudia Parra Paitan ◽  
Peter Verburg

The increasing international trade of agricultural products has contributed to a larger diversity of food at low prices and represents an important economic value. However, such trade can also cause social, environmental and economic impacts beyond the limits of the countries directly involved in the exchange. Agricultural systems are telecoupled because the impacts caused by trade can generate important feedback loops, spillovers, rebound effects, time lags and non-linearities across multiple geographical and temporal scales that make these impacts more difficult to identify and mitigate. We make a comparative review of current impact assessment methods to analyze their suitability to assess the impacts of telecoupled agricultural supply chains. Given the large impacts caused by agricultural production on land systems, we focus on the capacity of methods to account for and spatially allocate direct and indirect land use change. Our analysis identifies trade-offs between methods with respect to the elements of the telecoupled system they address. Hybrid methods are a promising field to navigate these trade-offs. Knowledge gaps in assessing indirect land use change should be overcome in order to improve the accuracy of assessments.


2020 ◽  
Vol 14 (5) ◽  
pp. 924-934 ◽  
Author(s):  
Vassilis Daioglou ◽  
Geert Woltjer ◽  
Bart Strengers ◽  
Berien Elbersen ◽  
Goizeder Barberena Ibañez ◽  
...  

2011 ◽  
Vol 1 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Andre M. Nassar ◽  
Leila Harfuch ◽  
Luciane C. Bachion ◽  
Marcelo R. Moreira

The use of agricultural-based biofuels has expanded. Discussions on how to assess green house gas (GHG) emissions from biofuel policies, specifically on (non-observed) land-use change (LUC) effects involve two main topics: (i) the limitations on the existing methodologies, and (ii) how to isolate the effects of biofuels. This paper discusses the main methodologies currently used by policy-makers to take decisions on how to quantify LUCs owing to biofuel production expansion. It is our opinion that the concerns regarding GHG emissions associated with LUCs should focus on the agricultural sector as a whole rather than concentrating on biofuel production. Actually, there are several limitations of economic models and deterministic methodologies for simulating and explaining LUCs resulting from the expansion of the agricultural sector. However, it is equally true that there are avenues of possibilities to improve models and make them more accurate and precise in order to be used for policy-making. Models available need several improvements to reach perfection. Any top model requires a concentration of interdisciplinary designers in order to replicate empirical evidence and capture correctly the agricultural sector dynamics for different countries and regions. Forgetting those limitations means that models will be used for the wrong purposes.


Biofuels ◽  
2012 ◽  
Vol 3 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Birka Wicke ◽  
Pita Verweij ◽  
Hans van Meijl ◽  
Detlef P van Vuuren ◽  
Andre PC Faaij

Sign in / Sign up

Export Citation Format

Share Document