Learning OWA filters parameters for SAR imagery with multiple polarizations

Author(s):  
L. Torres ◽  
J.C. Becceneri ◽  
C.C. Freitas ◽  
S.J.S. Sant'Anna ◽  
S. Sandri
Keyword(s):  
2011 ◽  
Vol 33 (7) ◽  
pp. 1706-1712 ◽  
Author(s):  
Shao-ming Zhang ◽  
Xiang-chen He ◽  
Xiao-hu Zhang ◽  
Yi-wei Sun
Keyword(s):  

Author(s):  
G.J. Vigurs ◽  
C. Milner ◽  
M.L. Jarrett

2021 ◽  
Vol 11 (15) ◽  
pp. 6923
Author(s):  
Rui Zhang ◽  
Zhanzhong Tang ◽  
Dong Luo ◽  
Hongxia Luo ◽  
Shucheng You ◽  
...  

The use of remote sensing technology to monitor farmland is currently the mainstream method for crop research. However, in cloudy and misty regions, the use of optical remote sensing image is limited. Synthetic aperture radar (SAR) technology has many advantages, including high resolution, multi-mode, and multi-polarization. Moreover, it can penetrate clouds and mists, can be used for all-weather and all-time Earth observation, and is sensitive to the shape of ground objects. Therefore, it is widely used in agricultural monitoring. In this study, the polarization backscattering coefficient on time-series SAR images during the rice-growing period was analyzed. The rice identification results and accuracy of InSAR technology were compared with those of three schemes (single-time-phase SAR, multi-time-phase SAR, and combination of multi-time-phase SAR and InSAR). Results show that VV and VH polarization coherence coefficients can well distinguish artificial buildings. In particular, VV polarization coherence coefficients can well distinguish rice from water and vegetation in August and September, whereas VH polarization coherence coefficients can well distinguish rice from water and vegetation in August and October. The rice identification accuracy of single-time series Sentinel-1 SAR image (78%) is lower than that of multi-time series SAR image combined with InSAR technology (81%). In this study, Guanghan City, a cloudy region, was used as the study site, and a good verification result was obtained.


2021 ◽  
Vol 13 (3) ◽  
pp. 530
Author(s):  
Junjun Yin ◽  
Jian Yang

Pseudo quad polarimetric (quad-pol) image reconstruction from the hybrid dual-pol (or compact polarimetric (CP)) synthetic aperture radar (SAR) imagery is a category of important techniques for radar polarimetric applications. There are three key aspects concerned in the literature for the reconstruction methods, i.e., the scattering symmetric assumption, the reconstruction model, and the solving approach of the unknowns. Since CP measurements depend on the CP mode configurations, different reconstruction procedures were designed when the transmit wave varies, which means the reconstruction procedures were not unified. In this study, we propose a unified reconstruction framework for the general CP mode, which is applicable to the mode with an arbitrary transmitted ellipse wave. The unified reconstruction procedure is based on the formalized CP descriptors. The general CP symmetric scattering model-based three-component decomposition method is also employed to fit the reconstruction model parameter. Finally, a least squares (LS) estimation method, which was proposed for the linear π/4 CP data, is extended for the arbitrary CP mode to estimate the solution of the system of non-linear equations. Validation is carried out based on polarimetric data sets from both RADARSAT-2 (C-band) and ALOS-2/PALSAR (L-band), to compare the performances of reconstruction models, methods, and CP modes.


Author(s):  
Saumya Sinha ◽  
Sophie Giffard-Roisin ◽  
Fatima Karbou ◽  
Michael Deschatres ◽  
Anna Karas ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 961 ◽  
Author(s):  
Marinalva Dias Soares ◽  
Luciano Vieira Dutra ◽  
Gilson Alexandre Ostwald Pedro da Costa ◽  
Raul Queiroz Feitosa ◽  
Rogério Galante Negri ◽  
...  

Per-point classification is a traditional method for remote sensing data classification, and for radar data in particular. Compared with optical data, the discriminative power of radar data is quite limited, for most applications. A way of trying to overcome these difficulties is to use Region-Based Classification (RBC), also referred to as Geographical Object-Based Image Analysis (GEOBIA). RBC methods first aggregate pixels into homogeneous objects, or regions, using a segmentation procedure. Moreover, segmentation is known to be an ill-conditioned problem because it admits multiple solutions, and a small change in the input image, or segmentation parameters, may lead to significant changes in the image partitioning. In this context, this paper proposes and evaluates novel approaches for SAR data classification, which rely on specialized segmentations, and on the combination of partial maps produced by classification ensembles. Such approaches comprise a meta-methodology, in the sense that they are independent from segmentation and classification algorithms, and optimization procedures. Results are shown that improve the classification accuracy from Kappa = 0.4 (baseline method) to a Kappa = 0.77 with the presented method. Another test site presented an improvement from Kappa = 0.36 to a maximum of 0.66 also with radar data.


Sign in / Sign up

Export Citation Format

Share Document