T Cell Receptor Engineered T Cell Therapy in Oncology

Author(s):  
Gwendolyn K. Binder ◽  
Rafael G. Amado
2018 ◽  
Vol 6 (5) ◽  
pp. 594-604 ◽  
Author(s):  
Takemasa Tsuji ◽  
Akira Yoneda ◽  
Junko Matsuzaki ◽  
Anthony Miliotto ◽  
Courtney Ryan ◽  
...  

2017 ◽  
Vol 19 (suppl_3) ◽  
pp. iii18-iii19
Author(s):  
Z. Chheda ◽  
G. Kohanbash ◽  
J. Sidney ◽  
K. Okada ◽  
N. Jahan ◽  
...  

2020 ◽  
Vol 12 (571) ◽  
pp. eaaz6667
Author(s):  
Meixi Hao ◽  
Siyuan Hou ◽  
Weishuo Li ◽  
Kaiming Li ◽  
Lingjing Xue ◽  
...  

Treatment of solid tumors with T cell therapy has yielded limited therapeutic benefits to date. Although T cell therapy in combination with proinflammatory cytokines or immune checkpoints inhibitors has demonstrated preclinical and clinical successes in a subset of solid tumors, unsatisfactory results and severe toxicities necessitate the development of effective and safe combinatorial strategies. Here, the liposomal avasimibe (a metabolism-modulating drug) was clicked onto the T cell surface by lipid insertion without disturbing the physiological functions of the T cell. Avasimibe could be restrained on the T cell surface during circulation and extravasation and locally released to increase the concentration of cholesterol in the T cell membrane, which induced rapid T cell receptor clustering and sustained T cell activation. Treatment with surface anchor-engineered T cells, including mouse T cell receptor transgenic CD8+ T cells or human chimeric antigen receptor T cells, resulted in superior antitumor efficacy in mouse models of melanoma and glioblastoma. Glioblastoma was completely eradicated in three of the five mice receiving surface anchor-engineered chimeric antigen receptor T cells, whereas mice in other treatment groups survived no more than 64 days. Moreover, the administration of engineered T cells showed no obvious systemic side effects. These cell-surface anchor-engineered T cells hold translational potential because of their simple generation and their safety profile.


2019 ◽  
Vol 18 ◽  
pp. 153303381983106 ◽  
Author(s):  
Jianxiang Zhang ◽  
Lingyu Wang

T-cell receptor–engineered T-cell therapy and chimeric antigen receptor T-cell therapy are 2 types of adoptive T-cell therapy that genetically modify natural T cells to treat cancers. Although chimeric antigen receptor T-cell therapy has yielded remarkable efficacy for hematological malignancies of the B-cell lineages, most solid tumors fail to respond significantly to chimeric antigen receptor T cells. T-cell receptor–engineered T-cell therapy, on the other hand, has shown unprecedented promise in treating solid tumors and has attracted growing interest. In order to create an unbiased, comprehensive, and scientific report for this fast-moving field, we carefully analyzed all 84 clinical trials using T-cell receptor–engineered T-cell therapy and downloaded from ClinicalTrials.gov updated by June 11, 2018. Informative features and trends were observed in these clinical trials. The number of trials initiated each year is increasing as expected, but an interesting pattern is observed. NY-ESO-1, as the most targeted antigen type, is the target of 31 clinical trials; melanoma is the most targeted cancer type and is the target of 33 clinical trials. Novel antigens and underrepresented cancers remain to be targeted in future studies and clinical trials. Unlike chimeric antigen receptor T-cell therapy, only about 16% of the 84 clinical trials target against hematological malignancies, consistent with T-cell receptor–engineered T-cell therapy’s high potential for solid tumors. Six pharma/biotech companies with novel T-cell receptor–engineered T-cell ideas and products were examined in this review. Multiple approaches have been utilized in these companies to increase the T-cell receptor’s affinity and efficiency and to minimize cross-reactivity. The major challenges in the development of the T-cell receptor–engineered T-cell therapy due to tumor microenvironment were also discussed here.


2020 ◽  
Vol 8 (7) ◽  
pp. 926-936 ◽  
Author(s):  
Yuki Kagoya ◽  
Tingxi Guo ◽  
Brian Yeung ◽  
Kayoko Saso ◽  
Mark Anczurowski ◽  
...  

Author(s):  
Andrew Gerry ◽  
Joseph Sanderson ◽  
Manoj Saini ◽  
Barbara Tavano ◽  
Roslin Docta ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-15
Author(s):  
Xian Zhang ◽  
Jiasheng Wang ◽  
Yue Liu ◽  
Junfang Yang ◽  
Jingjing Li ◽  
...  

Introduction Chimeric antigen receptor (CAR) T -cell therapy has demonstrated high response rates among patients with B cell malignancies yet remission durability and safety could be improved. We have developed a novel double-chain chimeric receptor Synthetic T Cell Receptor and Antigen Receptor (STAR) consisting of 2 protein modules each containing an antibody light or heavy chain variable region, the T Cell Receptor (TCR) a or b chain constant region fused to the OX-40 co-stimulatory domain, with the 2 modules linked by a self-cleaving Furin-p2A sequence that allows the modules to be proteolytically separated and reconstituted (Fig. 1A). Here, we report pre-clinical and first-in-human phase I trial results of CD19 STAR-T cell therapy for CD19+ R/R B-ALL. Methods Peripheral blood (PB) mononuclear cells were obtained from healthy donors and patients for the pre-clinical and clinical studies, respectively. T-cells were transduced with the STAR lentiviral vector. A leukemia xenograft mouse model was used to assess the STAR T-cell antitumor function. For the clinical trial, from Dec. 2019 to Jun. 2020, 18 CD19+ R/R B-ALL patients (M/F 10:8) with a median age of 22.5 years (range: 6-68) were enrolled (NCT03953599). Patients received a conditioning regimen of IV fludarabine (25mg/m2/d) and cyclophosphamide (250mg/m2/d) for 3 days followed by a single STAR T-cell infusion. Once patients achieved complete remission (CR), they were given the option to proceed to consolidation allogeneic hematopoietic stem cell transplantation (allo-HSCT) or not. Results In preclinical studies, we found CD19 STAR T-cells to be superior to conventional CAR (BBz CAR) measured by the following parameters: 1) faster/stronger T-cell activation within 3 hours (76.67±2.621% vs 46.4±9.318%; p=0.0253); 2) higher cytokine production (4100.92±174.4 pg/ml vs 2556.78±563.39 pg/ml; p<0.05, Fig.1B) ;3) superior target killing ability (effector: target [E: T] ratio=1:1, 50.39±1.74% vs 60.85±1.52%, p<0.05. E:T ratio>1:1, p<0.01, Fig.1B); 4) robust elimination of B-ALL in a xenograft mouse model, where a lower E:T ratio was sufficient to eliminate an equal number of tumor cells (E:T ratio =1:1, STAR vs. BBz-CAR, p<0.01, Fig.1C). In the phase I trial, the median observation time was 69 (20-180) days. The median pre-treatment bone marrow (BM) blast level was 7.0% (0.1%-86.6%). All 18 patients received a single infusion of STAR T-cells at a median dose of 1×106/kg (5×105/kg-2.5×106/kg): low dose (5×105/kg) (n=3), medium dose (1×106/kg) (n=8) and high-dose (2-2.5×106/kg) (n=7). Three early enrollees subsequently received a second consolidation infusion of STAR T-cells at 1×106/kg (n=2) and 2×106/kg (n=1). The median STAR T-cell production time was 9 (7-13) days with a transduction efficacy of 57.4% (41.0%-78.2%). Two weeks post STAR T-cell infusion, 18/18 (100%) patients achieved CR with a negative minimal residual disease (MRD) status. After a median of 57 (43-66) days following STAR T-cell therapy, 8/18 patients made a choice to pursue consolidation allo-HSCT and all have remained in CR after a median follow-up of 110 (75-180) days. Of the 10 patients who did not undergo allo-HSCT, 1 relapsed on day 58 and died from relapse on day 63. This patient had a pre-CAR T-cell BM blast level of 86.6% with central nervous system leukemia. Another patient became MRD-positive with 0.09% blasts on day 30 per flow cytometry (FCM). The other 8 patients have remained in CR. Despite the achievement of a high CR rate, cytokine release syndrome (CRS) occurred only in 10/18 (55.6%) patients with 8 Grade I, and 2 Grade II CRS. Two patients developed Grade III neurotoxicity. After STAR T-cell infusion, CD19 STAR T-cells in PB were followed by qPCR and FCM. We saw high in vivo proliferation and persistence regardless of the infusion dose. The median peak level was reached on day 8.5 (day 4-10) with 4.9×104 (0.104-175×104) copy number/ug PB genomic DNA detectable at 6 months. Conclusion This study demonstrates the superiority of STAR T-cells compared to conventional CAR T-cells in terms of signaling capacity, cytokine production capability and anti-tumor potency in an animal model. The Phase I first-in-human study demonstrated technical feasibility, clinical safety and efficacy of STAR-T in treating CD19+ R/R B-ALL. A high CR could be achieved on day 14 with low toxicity. Longer-term observation of these patients and studies of larger patient cohorts are warranted. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Nicholas S. Davis ◽  
Catherine Leites ◽  
Helicia Paz ◽  
Leslie Ryan ◽  
Nathaniel Magilnick ◽  
...  

2019 ◽  
Vol 68 (12) ◽  
pp. 1979-1993 ◽  
Author(s):  
Yuexin Xu ◽  
Alicia J. Morales ◽  
Michael J. Cargill ◽  
Andrea M. H. Towlerton ◽  
David G. Coffey ◽  
...  

Abstract 5T4 (trophoblast glycoprotein, TPBG) is a transmembrane tumor antigen expressed on more than 90% of primary renal cell carcinomas (RCC) and a wide range of human carcinomas but not on most somatic adult tissues. The favorable expression pattern has encouraged the development and clinical testing of 5T4-targeted antibody and vaccine therapies. 5T4 also represents a compelling and unexplored target for T-cell receptor (TCR)-engineered T-cell therapy. Our group has previously isolated high-avidity CD8+ T-cell clones specific for an HLA-A2-restricted 5T4 epitope (residues 17–25; 5T4p17). In this report, targeted single-cell RNA sequencing was performed on 5T4p17-specific T-cell clones to sequence the highly variable complementarity-determining region 3 (CDR3) of T-cell receptor α chain (TRA) and β chain (TRB) genes. Full-length TRA and TRB sequences were cloned into lentiviral vectors and transduced into CD8+ T-cells from healthy donors. Redirected effector T-cell function against 5T4p17 was measured by cytotoxicity and cytokine release assays. Seven unique TRA-TRB pairs were identified. All seven TCRs exhibited high expression on CD8+ T-cells with transduction efficiencies from 59 to 89%. TCR-transduced CD8+ T-cells demonstrated redirected cytotoxicity and cytokine release in response to 5T4p17 on target-cells and killed 5T4+/HLA-A2+ kidney-, breast-, and colorectal-tumor cell lines as well as primary RCC tumor cells in vitro. TCR-transduced CD8+ T-cells also detected presentation of 5T4p17 in TAP1/2-deficient T2 target-cells. TCR-transduced T-cells redirected to recognize the 5T4p17 epitope from a broadly shared tumor antigen are of interest for future testing as a cellular immunotherapy strategy for HLA-A2+ subjects with 5T4+ tumors.


2019 ◽  
Vol 9 (1) ◽  
pp. 1682381 ◽  
Author(s):  
Joseph P Sanderson ◽  
Darragh J Crowley ◽  
Guy E Wiedermann ◽  
Laura L Quinn ◽  
Katherine L Crossland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document