Introduction to Plastic Foams and Their Foaming

2018 ◽  
pp. 1-16 ◽  
Author(s):  
Mohammadreza Nofar ◽  
Chul B. Park
Keyword(s):  
1969 ◽  
Vol 5 (2) ◽  
pp. 112-118 ◽  
Author(s):  
Richard Chan ◽  
Masao Nakamura

1999 ◽  
Vol 74 (21) ◽  
pp. 3224-3226 ◽  
Author(s):  
Christophe Ayrault ◽  
Alexei Moussatov ◽  
Bernard Castagnède ◽  
Denis Lafarge

2018 ◽  
Vol 54 (5) ◽  
pp. 851-884
Author(s):  
Ilze Beverte

Widespread applications of rigid polyurethane and plastic foams lead to shear deformations. Therefore, methods for ensuring shear using experimental investigations are necessary, including the possibility of determining the shear modulus, strength and limit angle. Therefore, a device that allows investigating the shear properties of highly porous plastic foams was developed. The proposed device comprises a clip-on extensometer, commonly exploited in uni-axial compression/tension tests, for the determination of the shear displacement directly on the foams’ sample, on a measurement zone of certain dimensions and location. An innovative construction of the extensometer’s legs is elaborated, permitting to investigate the shear displacement field for different dimensions of the measurement zone. Precision of the device is examined by performing a penetration test on materials of different densities: (a) polyurethane foams and (b) wood. Technology for the production of isotropic polyurethane foams as a test material is described in detail. Experimental determination of shear modulus and strength of one and the same sample, in one and the same experiment is elaborated. Displacements in different zones of sample’s work beam are investigated. Experimental data are compared with the results of mathematical modelling and a good correlation is proved to exist.


2000 ◽  
Author(s):  
Karl-Axel Olsson

Abstract In Sweden we have a long experience with different types of vehicles and ships in sandwich construction, especially Navy ships such as minesweepers, mine-counter-measure-vessels and corvettes. GRP (Glass fibre Reinforced Plastic) and FRP (Fibre Reinforced Plastics) have been the most common face materials, but metallic materials such as Al-alloys, coated carbon steel and stainless steel have also been used. Core materials have usually been cellular plastic foams of cross-linked PVC (Polyvinyl-chloride), but also extruded PS (Poly-styrene), PUR (Poly-urethane), PEI (Poly-ether-imide) and PMI (Poly-methacryl-imide). Different continuous and discontinuous manufacturing processes have been used. Vacuum assisted infusion has been introduced recently, because it is a closed process, gives high fibre content and a good quality of the laminates. Sandwich design has mainly been used in the transportation area, where lightweight design is needed to give higher performance and load bearing capacity. The use of sandwich construction will give high stiffness- and strength-to weight ratio. This is usually not enough from an economic point of view to justify the introduction of sandwich construction, but other integrated functions must be considered, i.e. insulation, energy consumption, damping, fewer components, lower manufacturing costs, low maintenance, signature effects (military) etc.


2020 ◽  
pp. 009524432093398
Author(s):  
Fuquan Deng ◽  
Hua Jin ◽  
Li Zhang ◽  
Yuxin He

Polymeric foam with lightweight and higher impact strength has been used in many fields due to cost reduction and higher toughness. However, it is often difficult to improve their mechanical property especially tear strength. Here, a double foaming system was designed to increase the tear strength of the foamed ethylene–propylene–diene monomer, styrene–butadiene rubber, and thermoplastic rubber (EPDM/SBR/TPR) materials. The cell size of EPDM/SBR/TPR foam and cell distribution were investigated by scanning electron microscopy, which showed that the cells present a bimodal structure. Besides, the tear strength can reach up to 10 N/mm when the density is about 0.40 g/cm3, which is much superior to those of most engineering plastic foams. Meanwhile, the crystallization property of EPDM/SBR/TPR foams was also demonstrated by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry, which indicates that the double foaming system can reduce the crystallization of EPDM/SBR/TPR molecular chains. In addition, the variation of thermal conductivity values depends on the gradual decrease effect of the cell size.


Sign in / Sign up

Export Citation Format

Share Document