Fly ash-mixed polymeric media for abrasive flow machining process

2022 ◽  
pp. 681-713
Author(s):  
Irfan Ahmad Ansari ◽  
Gopal A. Gupta ◽  
Janakarajan Ramkumar ◽  
Kamal K. Kar
Author(s):  
Kai Cheng ◽  
Yizhi Shao ◽  
Mitul Jadva ◽  
Rodrigo Bodenhorst

The paper presents an improved Preston equation, which aims to be part of the industrial application to abrasive flow machining. The equation will aid the engineers to optimise the process for desired surface roughness and edge tolerance characteristics on complex geometries in an intuitive and scientific manner. The methodology presented to derive the equation underpins the fundamental cutting mechanics of abrasive machining or polishing assuming all abrasive particles within the media are spherical as manufacturers defined. Further to derivation, full four factorial experimental trials and computational fluid dynamics simulation are implemented to generate the flow features of media on coupon to evaluate and validate the equation for its competency and accuracy on prediction of material removal. The modified Preston equation can significantly contribute to optimise the abrasive flow machining process, and will advantage the integrated machine design to predict better virtual surface roughness and material removal rates.


Author(s):  
Ze Yu ◽  
Dunwen Zuo ◽  
Yuli Sun ◽  
Guohua Li ◽  
Xuemei Chen ◽  
...  

To simultaneously optimize the surface quality and machining efficiency of the electrical discharge machining (EDM) processes used to produce titanium alloy quadrilateral group small hole parts, a combined “EDM + AFM” machining technology is proposed in this paper as an efficient and high-quality machining approach. In the proposed method, TC4 titanium alloy is first machined using the EDM process with graphite electrodes and the abrasive flow machining (AFM) process is then used to finish the machined surface. The effects of various electrical parameters on EDM-derived surface quality and improvements in EDM-derived quality under the application of AFM were assessed and, using the final surface roughness as a constraint condition, the effects of various combinations of EDM and “EDM + AFM” on efficiency were studied. The results revealed that the thickness and surface roughness of the superficial recast layer of the TC4 titanium alloy increase with both current and pulse width; in particular, increasing these parameters can increase the surface roughness by two to three grades. Following AFM, the alloy has a more uniform hardness distribution and the surface stress state changes from tensile to compressive stress, indicating that the combined “EDM + AFM” machining scheme can significantly enhance the surface quality of EDM-produced titanium alloy quadrilateral small group holes. The combined scheme achieves a balancing point beyond which increasing the roughness or the number of machining holes enhances either the machining efficiency or the machining surface quality. In the case of typical titanium alloy quadrilateral group small hole parts, the combined machining process can improve the finishing efficiency and total machining efficiency by 71.2% and 25.36%, respectively.


2020 ◽  
Vol 106 (11-12) ◽  
pp. 5061-5070 ◽  
Author(s):  
Marcelo Rodrigo Munhoz ◽  
Larissa Galante Dias ◽  
Ricardo Breganon ◽  
Fernando Sabino Fonteque Ribeiro ◽  
Janaina Fracaro de Souza Gonçalves ◽  
...  

2016 ◽  
Vol 1136 ◽  
pp. 131-134 ◽  
Author(s):  
Xuan Ping Wang ◽  
You Zhi Fu ◽  
Hang Gao

Abrasive flow machining is a suitable technique for surface polishing due to its rheological characteristics, however, it's difficult to achieve uniform roughness for polished surfaces as the material removal mechanism is still ambiguous. In this paper the viscoelastic properties of abrasive flow media are incorporated to explore the phenomena of inconsistent material removal in the AFM polishing process, where the material removal near the edges is obviously higher than that in the middle along the flow direction. The rheological parameters of the viscoelastic constitutive model adopted are varied to study the polishing effectiveness under different process conditions. The results of numerical analysis reveal that there exist distinct differences of viscoelastic stress fields between the edges and the middle regions, which leads to the material removal near the edges is higher than that in the middle. It could be concluded that the viscoelastic properties of abrasive media play the dominant role for the inconsistent material removal in abrasive flow machining process.


Author(s):  
Mittal Sushil ◽  
Kumar Vinod ◽  
Kumar Harmesh

It is hard to finish small slots in composite materials which have wide applications nowadays in aerospace, automobile and medical. Abrasive flow machining is a process that is suitable for such type of operations. In this paper, by using abrasive flow machining, investigation of SiC Metal Matrix Composites (MMCs) with aluminum as base material has been done. Material removal rate and change in surface roughness (ΔRa) are taken as response parameters. Response surface methodology has been applied to find out the effect of input parameters like fluid pressure, percentage of oil in media, grit size, concentration of abrasives, workpiece material and number of cycles on response parameters. Box–Behnken design has been preferred. Response parameters have been optimized using the desirability approach in response surface methodology. The significance of different parameters is identified using analysis of variance. An optimum combination of parameters is designed for the process. Furthermore, specimens were examined and analyzed using scanning electron microscope and X-ray diffraction techniques.


Sign in / Sign up

Export Citation Format

Share Document