Study on Effect of Viscoelastic Properties on Surface Roughness Uniformity in Abrasive Flow Machining for Plate Surface

2016 ◽  
Vol 1136 ◽  
pp. 131-134 ◽  
Author(s):  
Xuan Ping Wang ◽  
You Zhi Fu ◽  
Hang Gao

Abrasive flow machining is a suitable technique for surface polishing due to its rheological characteristics, however, it's difficult to achieve uniform roughness for polished surfaces as the material removal mechanism is still ambiguous. In this paper the viscoelastic properties of abrasive flow media are incorporated to explore the phenomena of inconsistent material removal in the AFM polishing process, where the material removal near the edges is obviously higher than that in the middle along the flow direction. The rheological parameters of the viscoelastic constitutive model adopted are varied to study the polishing effectiveness under different process conditions. The results of numerical analysis reveal that there exist distinct differences of viscoelastic stress fields between the edges and the middle regions, which leads to the material removal near the edges is higher than that in the middle. It could be concluded that the viscoelastic properties of abrasive media play the dominant role for the inconsistent material removal in abrasive flow machining process.

Author(s):  
Kai Cheng ◽  
Yizhi Shao ◽  
Mitul Jadva ◽  
Rodrigo Bodenhorst

The paper presents an improved Preston equation, which aims to be part of the industrial application to abrasive flow machining. The equation will aid the engineers to optimise the process for desired surface roughness and edge tolerance characteristics on complex geometries in an intuitive and scientific manner. The methodology presented to derive the equation underpins the fundamental cutting mechanics of abrasive machining or polishing assuming all abrasive particles within the media are spherical as manufacturers defined. Further to derivation, full four factorial experimental trials and computational fluid dynamics simulation are implemented to generate the flow features of media on coupon to evaluate and validate the equation for its competency and accuracy on prediction of material removal. The modified Preston equation can significantly contribute to optimise the abrasive flow machining process, and will advantage the integrated machine design to predict better virtual surface roughness and material removal rates.


Author(s):  
Zhiguo Dong ◽  
Gang Ya ◽  
Jiancheng Liu

Abrasive flow machining is a pragmatic machining process used for part finishing. This article primarily focuses on the study of machining mechanism of high viscoelastic abrasive flow machining, with the aim to understand the relation among the abrasive media’s flow pressure, the material removal rate and the machining quality. The theoretical calculation models of the normal pressure on the inner surface of a circular tube and the wall sliding velocity are established based on rheology theory. The material removal rate of abrasive flow machining with a high viscoelastic abrasive media is derived. Numerical simulations with various machining conditions were conducted using the mathematical models proposed in this research and the obtained findings are discussed. The feasibility of these models introduced for high viscoelastic abrasive machining is also investigated and verified through actual experimental tests.


2016 ◽  
Vol 874 ◽  
pp. 127-132
Author(s):  
Takashi Sato ◽  
Edwin Soh ◽  
Yuuichiro Nakayama ◽  
Miki Shinagawa ◽  
Yasuhiko Fukuchi

Abrasive flow machining (AFM) is one of the most promising technologies for internal finishing and de-burring for features with complex geometry. This study investigates the effect of media degradation on finishing characteristics achieved using the AFM process. A total of 50 experiments, using Inconel 718 cylindrical coupons machined by Wire-Electron Discharge Machining (WEDM), were conducted employing the same process conditions while using a single batch of AFM media. Experimental results indicate that media degradation has minor influence on surface roughness, but more significant influence on material removal and media flow rate. Material removal decreases exponentially with increasing cumulative media flow volume despite media flow rate increasing. There is a linear correlation between material removal and media flow rate. As a result, material removal can be estimated from media flow rate which can be monitored easily.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Panagiotis Karmiris-Obratański ◽  
Nikolaos E. Karkalos ◽  
Rafał Kudelski ◽  
Emmanouil L. Papazoglou ◽  
Angelos P. Markopoulos

Abrasive waterjet cutting is a well-established non-conventional technique for the processing of difficult-to-cut material and rendering of various complex geometries with high accuracy. However, as in every machining process, it is also required that high efficiency and productivity are achieved. For that reason, in the present study, the effect of performing the machining process by multiple passes is investigated, and the evaluation of this approach is performed in terms of total depth of penetration, kerf width, kerf taper angle, mean material removal rate, and cutting efficiency. In the case of multiple passes, the passes are performed in the same direction with the traverse speed adjusted accordingly in order to maintain the total machining time constant in each case. From the experimental results, it was found that the effect of multiple passes on the kerf characteristics, mean material removal rate, and cutting efficiency depends on the process conditions, especially regarding the depth of penetration, and it is possible to achieve significantly higher efficiency by the multi-pass cutting technique when the appropriate process conditions are selected.


Author(s):  
Parvesh Ali ◽  
Ranganath M. S ◽  
R.S Walia ◽  
Q. Murtaza

Abrasive flow machining is a nonconventional process used for polishing of metallic components, internal inaccessible cavities or recesses using a semi liquid paste. It was developed to deburr, polish the surfaces having complex geometries and edges by flowing abrasive particles with a visco-elastic nonconductive media over them. Abrasive particle sharp cutting edges remove the material by abrasion mechanism from the workpiece surface. In the recent year, work has been carryout towards the development of abrasive flow machining for achieving the higher material removal and improved surface finish. This method has a unique property of simultaneous improvement in material removal and surface finish. In this paper authors discussed about various recent developments in abrasive flow machining with major objective of improving the productivity of the process.


Sign in / Sign up

Export Citation Format

Share Document