Chitin and chitosan—important structural components in Trichoderma cell wall remodeling

Author(s):  
Lisa Kappel ◽  
Sabine Gruber
Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 392
Author(s):  
Haomiao Cheng ◽  
Chris Bowler ◽  
Xiaohui Xing ◽  
Vincent Bulone ◽  
Zhanru Shao ◽  
...  

β-Chitin produced by diatoms is expected to have significant economic and ecological value due to its structure, which consists of parallel chains of chitin, its properties and the high abundance of diatoms. Nevertheless, few studies have functionally characterised chitin-related genes in diatoms owing to the lack of omics-based information. In this study, we first compared the chitin content of three representative Thalassiosira species. Cell wall glycosidic linkage analysis and chitin/chitosan staining assays showed that Thalassiosira weissflogii was an appropriate candidate chitin producer. A full-length (FL) transcriptome of T. weissflogii was obtained via PacBio sequencing. In total, the FL transcriptome comprised 23,362 annotated unigenes, 710 long non-coding RNAs (lncRNAs), 363 transcription factors (TFs), 3113 alternative splicing (AS) events and 3295 simple sequence repeats (SSRs). More specifically, 234 genes related to chitin metabolism were identified and the complete biosynthetic pathways of chitin and chitosan were explored. The information presented here will facilitate T. weissflogii molecular research and the exploitation of β-chitin-derived high-value enzymes and products.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 89 ◽  
Author(s):  
Lazar Novaković ◽  
Tingting Guo ◽  
Antony Bacic ◽  
Arun Sampathkumar ◽  
Kim Johnson

Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.


1999 ◽  
Vol 181 (21) ◽  
pp. 6600-6606 ◽  
Author(s):  
Rikizo Aono ◽  
Masahiro Ito ◽  
Takayoshi Machida

ABSTRACT A teichuronopeptide (TUP) is one of major structural components of the cell wall of the facultative alkaliphilic strain Bacillus lentus C-125. A mutant defective in TUP synthesis grows slowly at alkaline pH. An upper limit of pH for growth of the mutant was 10.4, while that of the parental strain C-125 was 10.8. GenetupA, directing synthesis of TUP, was cloned from C-125 chromosomal DNA. The primary translation product of this gene is likely a cytoplasmic protein (57.3 kDa) consisting of 489 amino acid residues. Introduction of the tupA gene into the TUP-defective mutant complemented the mutation responsible for the pleiotropic phenotypes of the mutant, leading to simultaneous disappearance of the defect in TUP synthesis, the diminished ability for cytoplasmic pH homeostasis, and the low tolerance for alkaline conditions. These results demonstrate that the acidic polymer TUP in the cell wall plays a role in pH homeostasis in this alkaliphile.


Sign in / Sign up

Export Citation Format

Share Document