Microbial colonization of naturally fermented olives

Author(s):  
E.Z. Panagou ◽  
C.C. Tassou ◽  
G.-J.E. Nychas
2020 ◽  
Vol 91 (8) ◽  
pp. 651-661
Author(s):  
Joshua T. Davis ◽  
Hilary A. Uyhelji

INTRODUCTION: Although the impact of microorganisms on their hosts has been investigated for decades, recent technological advances have permitted high-throughput studies of the collective microbial genomes colonizing a host or habitat, also known as the microbiome. This literature review presents an overview of microbiome research, with an emphasis on topics that have the potential for future applications to aviation safety. In humans, research is beginning to suggest relationships of the microbiome with physical disorders, including type 1 and type 2 diabetes mellitus, cardiovascular disease, and respiratory disease. The microbiome also has been associated with psychological health, including depression, anxiety, and the social complications that arise in autism spectrum disorders. Pharmaceuticals can alter microbiome diversity, and may lead to unintended consequences both short and long-term. As research strengthens understanding of the connections between the microbiota and human health, several potential applications for aerospace medicine and aviation safety emerge. For example, information derived from tests of the microbiota has potential future relevance for medical certification of pilots, accident investigation, and evaluation of fitness for duty in aerospace operations. Moreover, air travel may impact the microbiome of passengers and crew, including potential impacts on the spread of disease nationally and internationally. Construction, maintenance, and cleaning regimens that consider the potential for microbial colonization in airports and cabin environments may promote the health of travelers. Altogether, the mounting knowledge of microbiome effects on health presents several opportunities for future research into how and whether microbiome-based insights could be used to improve aviation safety.Davis JT, Uyhelji HA. Aviation and the microbiome. Aerosp Med Hum Perform. 2020; 91(8):651–661.


2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


Micro ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 129-139
Author(s):  
Yu Yang ◽  
Sabrina Schwiderek ◽  
Guido Grundmeier ◽  
Adrian Keller

Implant-associated infections are an increasingly severe burden on healthcare systems worldwide and many research activities currently focus on inhibiting microbial colonization of biomedically relevant surfaces. To obtain molecular-level understanding of the involved processes and interactions, we investigate the adsorption of synthetic adhesin-like peptide sequences derived from the type IV pili of the Pseudomonas aeruginosa strains PAK and PAO at abiotic model surfaces, i.e., Au, SiO2, and oxidized Ti. These peptides correspond to the sequences of the receptor-binding domain 128–144 of the major pilin protein, which is known to facilitate P. aeruginosa adhesion at biotic and abiotic surfaces. Using quartz crystal microbalance with dissipation monitoring (QCM-D), we find that peptide adsorption is material- as well as strain-dependent. At the Au surface, PAO(128–144) shows drastically stronger adsorption than PAK(128–144), whereas adsorption of both peptides is markedly reduced at the oxide surfaces with less drastic differences between the two sequences. These observations suggest that peptide adsorption is influenced by not only the peptide sequence, but also peptide conformation. Our results furthermore highlight the importance of molecular-level investigations to understand and ultimately control microbial colonization of surfaces.


Sign in / Sign up

Export Citation Format

Share Document