Premixed swirling flame stabilization

Author(s):  
Paul Palies
Author(s):  
Man Zhang

A diffusion swirling flame under external forcing and self-excitation within a single swirler combustor have been studied in this paper with the large-eddy simulation and linear acoustic method. The combustor features pre-vaporized kerosene as the fuel, a single radial air swirler for flame stabilization and a square cross section chamber with adjustable length. Firstly, self-sustained pressure oscillation has been achieved by using of a chocked nozzle on the chamber outlet with large-eddy simulation. Dynamic pressure oscillations are analyzed in frequency domain through Fast Fourier Transform. The major pressure oscillation is identified as the 1st order longitudinal mode of the chamber. Further, the same frequency in the form of harmonic velocity oscillation is imposed on the inlet of the combustor while the chamber length has been changed. Based on this approach, a comparative study of the flame response with different excitation method but same frequency is carried out. In both self-excited and forced cases, global and local flame responses as well as Rayleigh index have been analyzed and compared. With the flame response function, the excited acoustic modes under the influence of dynamic heat release have been predicted with linear acoustic method and compared with the results obtained from large-eddy simulation. Results show that the flame response presents a great difference in the spacial distribution with different excitation approaches. Thermo-acoustic interaction distributes along the flame front with the expansion of the flame under self-excitation while it damps with the acoustic propagating downstream under forcing condition. As the ratio of flame length to acoustic wave length could not be neglected for the diffusion swirling flame, the global flame response under forcing cannot represent the local response feature of the flame accurately, thus influencing the instability prediction.


Author(s):  
Sandeep Jella ◽  
Pierre Gauthier ◽  
Gilles Bourque ◽  
Jeffrey Bergthorson ◽  
Ghenadie Bulat ◽  
...  

Finite-rate chemical effects at gas turbine conditions lead to incomplete combustion and well-known emissions issues. Although a thin flame front is preserved on an average, the instantaneous flame location can vary in thickness and location due to heat losses or imperfect mixing. Postflame phenomena (slow CO oxidation or thermal NO production) can be expected to be significantly influenced by turbulent eddy structures. Since typical gas turbine combustor calculations require insight into flame stabilization as well as pollutant formation, combustion models are required to be sensitive to the instantaneous and local flow conditions. Unfortunately, few models that adequately describe turbulence–chemistry interactions are tractable in the industrial context. A widely used model capable of employing finite-rate chemistry is the eddy dissipation concept (EDC) model of Magnussen. Its application in large eddy simulations (LES) is problematic mainly due to a strong sensitivity to the model constants, which were based on an isotropic cascade analysis in the Reynolds-averaged Navier–Stokes (RANS) context. The objectives of this paper are: (i) to formulate the EDC cascade idea in the context of LES; and (ii) to validate the model using experimental data consisting of velocity (particle image velocimetry (PIV) measurements) and major species (1D Raman measurements), at four axial locations in the near-burner region of a Siemens SGT-100 industrial gas turbine combustor.


Author(s):  
Luís Fernando Figueira da Silva ◽  
Carolina Mergulhão ◽  
Letícia Piton ◽  
scouflaire philippe ◽  
Nasser Darabiha

Author(s):  
Sandeep Jella ◽  
Pierre Gauthier ◽  
Gilles Bourque ◽  
Jeffrey Bergthorson ◽  
Ghenadie Bulat ◽  
...  

Finite-rate chemical effects at gas turbine conditions lead to incomplete combustion and well-known emissions issues. Although a thin flame front is preserved on an average, the instantaneous flame location can vary in thickness and location due to heat losses or imperfect mixing. Post-flame phenomena (slow CO oxidation or thermal NO production) can be expected to be significantly influenced by turbulent eddy structures. Since typical gas turbine combustor calculations require insight into flame stabilization as well as pollutant formation, combustion models are required to be sensitive to the instantaneous and local flow conditions. Unfortunately, few models that adequately describe turbulence-chemistry interactions are tractable in the industrial context. A widely used model capable of employing finite-rate chemistry, is the Eddy Dissipation Concept (EDC) model of Magnussen. Its application in large eddy simulations (LES) is problematic mainly due to a strong sensitivity to the model constants which were based on an isotropic cascade analysis in the RANS context. The objectives of this paper are: (i) To formulate the EDC cascade idea in the context of LES; and (ii) To validate the model using experimental data consisting of velocity (PIV measurements) and major species (1-D Raman measurements), at four axial locations in the near-burner region of a Siemens SGT-100 industrial gas turbine combustor.


Author(s):  
A. Smirnov ◽  
A. Lipatnikov ◽  
J. Chomiak

Combustion flows with swirl are investigated in the context of a lean premixed pre-vaporized combustor. The turbulent flame speed closure model implemented into the Kiva program appears to be efficient in utilizing computing time and memory. It also predicts a larger flame spread than a distributed reactor model. The effect of different turbulence and combustion models on flow recirculation patterns and heat release is reported.


1997 ◽  
Author(s):  
E. Koc-Alkislar ◽  
L. Lourenco ◽  
A. Krothapalli ◽  
P. Strykowski ◽  
E. Koc-Alkislar ◽  
...  

1994 ◽  
Vol 99 (2) ◽  
pp. 288-294 ◽  
Author(s):  
Jing-Tang Yang ◽  
Chang-Wu Yen ◽  
Go-Long Tsai

Sign in / Sign up

Export Citation Format

Share Document