Equilibrium and phase stability in one-component systems

Author(s):  
İsmaı̇l Tosun
Author(s):  
D. A. Smith

The nucleation and growth processes which lead to the formation of a thin film are particularly amenable to investigation by transmission electron microscopy either in situ or subsequent to deposition. In situ studies have enabled the observation of island nucleation and growth, together with addition of atoms to surface steps. This paper is concerned with post-deposition crystallization of amorphous alloys. It will be argued that the processes occurring during low temperature deposition of one component systems are related but the evidence is mainly indirect. Amorphous films result when the deposition conditions such as low temperature or the presence of impurities (intentional or unintentional) preclude the atomic mobility necessary for crystallization. Representative examples of this behavior are CVD silicon grown below about 670°C, metalloids, such as antimony deposited at room temperature, binary alloys or compounds such as Cu-Ag or Cr O2, respectively. Elemental metals are not stable in the amorphous state.


2020 ◽  
Vol 8 (44) ◽  
pp. 15852-15859
Author(s):  
Jiu Chen ◽  
Fuhua Li ◽  
Yurong Tang ◽  
Qing Tang

Chemical functionalization can significantly improve the stability of meta-stable 1T′-MoS2 and tune the surface HER activity.


1998 ◽  
Vol 538 ◽  
Author(s):  
Raúl A. Enrique ◽  
Pascal Bellon

AbstractPhase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results from two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges. The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram.


1979 ◽  
Vol 7 (1) ◽  
pp. 31-39
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract An automatic tread gaging machine has been developed. It consists of three component systems: (1) a laser gaging head, (2) a tire handling device, and (3) a computer that controls the movement of the tire handling machine, processes the data, and computes the least-squares straight line from which a wear rate may be estimated. Experimental tests show that the machine has good repeatability. In comparisons with measurements obtained by a hand gage, the automatic machine gives smaller average groove depths. The difference before and after a period of wear for both methods of measurement are the same. Wear rates estimated from the slopes of straight lines fitted to both sets of data are not significantly different.


2019 ◽  
Vol 61 (7) ◽  
pp. 609-617 ◽  
Author(s):  
Arpaporn Nararak ◽  
Panyawat Wangyao ◽  
Tanaporn Rojhirunsakool ◽  
Gobboon Lothongkum

Sign in / Sign up

Export Citation Format

Share Document