The role of forests in the carbon cycle and in climate change

2021 ◽  
pp. 561-579
Author(s):  
Matthew D. Hurteau
Keyword(s):  
2011 ◽  
Vol 2 (1) ◽  
pp. 133-159
Author(s):  
J. F. Tjiputra ◽  
O. H. Otterå

Abstract. Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller but more frequent eruptions, such as Pinatubo, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before return to the warming trend. Therefore, the climate change is approximately delayed by several decades and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45% increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by reduced CO2 partial pressure gradient between ocean and atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling only leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century. With respect to sulphur injection geoengineering method, our study suggest that small scale but frequent mitigation is more efficient than the opposite. Moreover, the longer we delay, the more difficult it would be to counteract climate change.


2011 ◽  
Vol 113 (3-4) ◽  
pp. 897-917 ◽  
Author(s):  
Andries F. Hof ◽  
Chris W. Hope ◽  
Jason Lowe ◽  
Michael D. Mastrandrea ◽  
Malte Meinshausen ◽  
...  

2011 ◽  
Vol 2 (1) ◽  
pp. 53-67 ◽  
Author(s):  
J. F. Tjiputra ◽  
O. H. Otterå

Abstract. Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink) on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century.


2019 ◽  
Author(s):  
Edward John Roy Clarke ◽  
Anna Klas ◽  
Joshua Stevenson ◽  
Emily Jane Kothe

Climate change is a politically-polarised issue, with conservatives less likely than liberals to perceive it as human-caused and consequential. Furthermore, they are less likely to support mitigation and adaptation policies needed to reduce its impacts. This study aimed to examine whether John Oliver’s “A Mathematically Representative Climate Change Debate” clip on his program Last Week Tonight polarised or depolarised a politically-diverse audience on climate policy support and behavioural intentions. One hundred and fifty-nine participants, recruited via Amazon MTurk (94 female, 64 male, one gender unspecified, Mage = 51.07, SDage = 16.35), were presented with either John Oliver’s climate change consensus clip, or a humorous video unrelated to climate change. Although the climate change consensus clip did not reduce polarisation (or increase it) relative to a control on mitigation policy support, it resulted in hyperpolarisation on support for adaptation policies and increased climate action intentions among liberals but not conservatives.


Sign in / Sign up

Export Citation Format

Share Document