Entomopathogenic nematodes

2022 ◽  
pp. 73-92
Author(s):  
Ashish Kumar Singh ◽  
Manish Kumar ◽  
Amit Ahuja ◽  
B.K. Vinay ◽  
Kiran Kumar Kommu ◽  
...  
EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
pp. 4
Author(s):  
Danielle M. Sprague ◽  
Joseph E. Funderburk

Originally published on the Featured Creatures Website at http://entnemdept.ufl.edu/creatures/nematode/Thripinema_spp.htm Includes: Introduction - Distribution - Life Cycle and Biology - Symptoms - Hosts and Identification - Economic Importance - Management - Selected References


Author(s):  
Maguintontz Cedney Jean-Baptiste ◽  
Andressa Lima de Brida ◽  
Daniel Bernardi ◽  
Sérgio da Costa Dias ◽  
Juliano de Bastos Pazini ◽  
...  

Abstract The Mediterranean fruit fly Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) is among the main pests of fruit crops worldwide. Biological control using entomopathogenic nematodes (EPNs) may be an alternative to suppress populations of this pest. Thus, the aim of this study was to evaluate the pathogenicity and virulence of six EPN isolates (Heterorhabditis bacteriophora HB, H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47, and S. brazilense IBCB-n06) against C. capitata pupae. The compatibility of EPNs with different chemical insecticides that are registered for management of C. capitata was also assessed. Isolates of H. bacteriophora HB and S. brazilense IBCB-n06 at a concentration of 1,000 infective juveniles (IJ)/ml proved to be most pathogenic to C. capitata (70 and 80% mortality, respectively). In contrast, the isolates H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47 provided pupal mortality of less than 60%. Bioassays to determine lethal concentrations indicated that concentrations of 600 IJ/ml (H. bacteriophora HB) and 1,000 IJ/ml (S. brazilense IBCB-n06) showed the highest virulence against C. capitata pupae. In contrast, the highest numbers of IJs emerged at concentrations of 1,200 and 200 IJ/ml. In compatibility bioassays, malathion, spinetoram, phosmet, acetamiprid, and novaluron were considered compatible with and harmless (Class 1) to H. bacteriophora HB and S. brazilense IBCB-n06, according to IOBC/WPRS. This information is important for implementing integrated management programs for C. capitata, using biological control with EPNs, whether alone or in combination with chemical insecticides.


2021 ◽  
Vol 95 ◽  
Author(s):  
R. Pervez ◽  
U. Rao

Abstract The legume pod-borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) (LPB), is an important insect pest of pigeon pea. Chemical pesticides are generally employed to manage this pest, but because of the soil residue issues and other environmental hazards associated with their use, biopesticides are also in demand. Another benign alternative is to use entomopathogenic nematodes (EPNs) to manage this vital pest. In the present study, the infectivity of ten native EPNs was evaluated against LPB by assessing their penetration and production in the LPB. The effectiveness of the promising EPNs against second-, third- and fourth-instar LPB larvae was also studied. Heterorhabditis sp. (Indian Agricultural Research Institute-Entomopathogenic Nematodes Rashid Pervez (IARI-EPN RP) 06) and Oscheius sp. (IARI-EPN RP 08) were found to be most pathogenic to LPB, resulting in about 100% mortality within 72 h, followed by Steinernema sp. (IARI-EPN RP 03 and 09). Oscheius sp. (IARI-EPN RP 04) was found to be the least pathogenic to LPB larva with 67% mortality. Maximum penetration was exhibited by Heterorhabditis sp. (IARI-EPN RP 06) followed by Oscheius sp. (IARI-EPN RP 08), whereas the lowest rate of penetration was exhibited by Oscheius sp. (IARI-EPN RP 01). The highest rate of production was observed with Oscheius sp. (IARI-EPN RP 08), followed by Oscheius sp. (IARI-EPN RP 04 and 10). Among the tested instars of the LPB larvae, second-instar larvae were more susceptible to EPNs, followed by third- and fourth-instar larvae. The results indicate that Heterorhabditis sp. (IARI-EPN RP 06) and Oscheius sp. (IARI-EPN RP 08) have a good potential to the manage LPB.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gamze Incedayi ◽  
Harun Cimen ◽  
Derya Ulug ◽  
Mustapha Touray ◽  
Edna Bode ◽  
...  

AbstractOur study aimed to identify the novel acaricidal compound in Xenorhabdus szentirmaii and X. nematophila using the easyPACId approach (easy Promoter Activated Compound Identification). We determined the (1) effects of cell-free supernatant (CFS) obtained from mutant strains against T. urticae females, (2) CFS of the acaricidal bioactive strain of X. nematophila (pCEP_kan_XNC1_1711) against different biological stages of T. urticae, and females of predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, (3) effects of the extracted acaricidal compound on different biological stages of T. urticae, and (4) cytotoxicity of the active substance. The results showed that xenocoumacin produced by X. nematophila was the bioactive acaricidal compound, whereas the acaricidal compound in X. szentirmaii was not determined. The CFS of X. nematophila (pCEP_kan_XNC1_1711) caused 100, 100, 97.3, and 98.1% mortality on larvae, protonymph, deutonymph and adult female of T. urticae at 7 dpa in petri dish experiments; and significantly reduced T. urticae population in pot experiments. However, the same CFS caused less than 36% mortality on the predatory mites at 7dpa. The mortality rates of extracted acaricidal compound (xenocoumacin) on the larva, protonymph, deutonymph and adult female of T. urticae were 100, 100, 97, 96% at 7 dpa. Cytotoxicity assay showed that IC50 value of xenocoumacin extract was 17.71 μg/ml after 48 h. The data of this study showed that xenocoumacin could potentially be used as bio-acaricide in the control of T. urticae; however, its efficacy in field experiments and its phytotoxicity need to be assessed in future.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Ewa Sajnaga ◽  
Marcin Skowronek ◽  
Agnieszka Kalwasińska ◽  
Waldemar Kazimierczak ◽  
Karolina Ferenc ◽  
...  

This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.


Sign in / Sign up

Export Citation Format

Share Document