Algal spent biomass—A pool of applications

2019 ◽  
pp. 397-433 ◽  
Author(s):  
A. Catarina Guedes ◽  
Helena M. Amaro ◽  
Isabel Sousa-Pinto ◽  
F. Xavier Malcata
Keyword(s):  
Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 299
Author(s):  
Nicoleta Radu ◽  
Ana Aurelia Chirvase ◽  
Narcisa Babeanu ◽  
Ovidiu Popa ◽  
Petruta Cornea ◽  
...  

A spent biomass, which results from the biopharma industry, is stabilized and functionalized by biosorption with microelements. The efficiency of this new biomaterial was tested in two experiments: 1) In a mixture with soil to determine its effects of the germination capacity of cereals and vegetables, and 2) in a formulation of mixed fertilizers to determine its influence on the development and production of the two types of vegetables. The results obtained during germination experiments performed in pots showed that at a biomass concentration less than 20%, the germination output was greater than 95% and the germination index was almost 1. The experiments performed in land on vegetables (including Solanum lycopersicum and Capsicum annuum) featured six types of fertilizers formulated with new biomaterials. The obtained results indicated that two types of fertilizers (N 10:0:0 and NP 5:5:0), which were formulated with functionalized biomass and featured the microelements Co, Cu, Fe, Mn, and Zn, exhibited significant effects when compared with vegetables cultivated on unfertilized soil surfaces (the untreated variant). The studies regarding the effect of the new fertilizers obtained based on spent biomass from biopharma industry indicate the following: a) This material, even if it is stabilized and functionalized, cannot be used as such as a germination substrate for vegetables; in addition, it cannot be introduced into soil together with cereals seeds (during the autumn work), because the germination can be affected negatively; b) the functionalized biomass can be used in the formulation of different types of fertilizers; if these fertilizers are introduced into soil with the autumn plowing, then they may have a positive influence on the yield of some species of vegetable, such as Solanum lycopersicum and Capsicum annum. The new fertilizers have a major environmental impact due to: 1) Removal of waste, which results from pharmaceutical biosyntheses, with significant impact on soil pollution, due to its storage in the form of waste dumps, on the soil; 2) recovery and reinsertion into the natural circuit of nutrients like C, N, P, K, Mg, and Ca contained in spent biomass, by their reuse in agriculture; and 3) high content of compounds with C from spent biomass can improve in time the content of fulvic and humic acids in soil, with a positive effect on soil characteristics from an agronomic point of view.


2015 ◽  
Vol 29 (8) ◽  
pp. 5171-5175 ◽  
Author(s):  
Xiangpeng Gao ◽  
Syamsuddin Yani ◽  
Hongwei Wu

2020 ◽  
Vol 249 ◽  
pp. 112392 ◽  
Author(s):  
T.S. Kumar ◽  
A. Josephine ◽  
T. Sreelatha ◽  
V.N. Azger Dusthackeer ◽  
B. Mahizhaveni ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Elijah G Kiarie ◽  
Conor Voth ◽  
Doug Wey ◽  
Cuilan Zhu ◽  
Lee-Anne Huber ◽  
...  

Abstract Growth performance, liver and spleen weight, plasma, and ceca digesta metabolites and incidences of diarrhea were investigated in growing pigs fed spent biomass of Pichia kudriavzevii. Ninety six barrows (~25 kg, 4 pigs/pen) were fed 1 of 4 experimental diets (n = 6) for 7 weeks. The diets were control, corn-, and soybean meal-based diet or control plus 2.5%, 3.75%, or 5.0% P. kudriavzevii. Diets were formulated to be isocaloric and iso nitrogenous. Feed intake and body weight (BW) were recorded weekly for calculation of average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F). Fecal scores were taken 3 d/wk to assess incidence and severity of diarrhea. One pig/pen close to pen average was bled for plasma metabolites on days 7 and 49 and subsequently euthanized for spleen and liver weight, ileal and cecum digesta samples for concentration of short-chain fatty acids (SCFA). The concentration of crude protein, crude fat, and non-fiber carbohydrates in P. kudriavzevii biomass was 36.4%, 9.6%, and 50.8% DM, respectively. Inclusion of P. kudriavzevii tended (P = 0.06) to linearly reduce ADG from days 8 through 49 resulting in a trend (P = 0.06) for linear reduction in the final BW. The final BW was 79.0, 79.2, 76.8, and 75.5 kg for the 0%, 2.5%, 3.75%, and 5.0% P. kudriavzevii, respectively. Diets had no effect (P > 0.10) on ADFI, G:F, spleen, and liver weight throughout the entire experiment. On day 7, there was cubic (P = 0.03) decrease and quadratic (P = 0.02) increase in plasma concentration of creatinine and urea N, respectively. However, there were no (P > 0.10) diet effects on plasma metabolites on day 49. There was a tendency (P = 0.08) for linear increase in cecum digesta concentration of acetic acid. There were no diet effects (P > 0.10) on fecal score in the first 4 wk of feeding. In conclusion, feeding P. kudriavzevii yeast tended to depress growth and stimulate cecum fermentation at higher dose and had no detrimental effects on organ weights or plasma metabolites in growing pigs.


2009 ◽  
Vol 75 (14) ◽  
pp. 4762-4769 ◽  
Author(s):  
Sung-Jae Yang ◽  
Irina Kataeva ◽  
Scott D. Hamilton-Brehm ◽  
Nancy L. Engle ◽  
Timothy J. Tschaplinski ◽  
...  

ABSTRACT Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that “Anaerocellum thermophilum” DSM 6725, an anaerobic bacterium that grows optimally at 75°C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75°C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70°C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.


2014 ◽  
pp. 205-233 ◽  
Author(s):  
A. Catarina Guedes ◽  
Helena M. Amaro ◽  
Isabel Sousa-Pinto ◽  
F. Xavier Malcata
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document