caldicellulosiruptor saccharolyticus
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 6)

H-INDEX

29
(FIVE YEARS 1)

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1799
Author(s):  
Manuel Benedetti ◽  
Valeria Vecchi ◽  
Zeno Guardini ◽  
Luca Dall’Osto ◽  
Roberto Bassi

Plant expression of microbial Cell Wall Degrading Enzymes (CWDEs) is a valuable strategy to produce industrial enzymes at affordable cost. Unfortunately, the constitutive expression of CWDEs may affect plant fitness to variable extents, including developmental alterations, sterility and even lethality. In order to explore novel strategies for expressing CWDEs in crops, the cellobiohydrolase CBM3GH5, from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus, was constitutively expressed in N. tabacum by targeting the enzyme both to the apoplast and to the protein storage vacuole. The apoplast targeting failed to isolate plants expressing the recombinant enzyme despite a large number of transformants being screened. On the opposite side, the targeting of the cellobiohydrolase to the protein storage vacuole led to several transgenic lines expressing CBM3GH5, with an enzyme yield of up to 0.08 mg g DW−1 (1.67 Units g DW−1) in the mature leaf tissue. The analysis of CBM3GH5 activity revealed that the enzyme accumulated in different plant organs in a developmental-dependent manner, with the highest abundance in mature leaves and roots, followed by seeds, stems and leaf ribs. Notably, both leaves and stems from transgenic plants were characterized by an improved temperature-dependent saccharification profile.


2020 ◽  
Vol 76 (11) ◽  
pp. 1104-1113
Author(s):  
Yinghui Feng ◽  
Xiao Hua ◽  
Qiuyun Shen ◽  
Melissa Matthews ◽  
Yuzhu Zhang ◽  
...  

Cellobiose 2-epimerase (CE) is commonly recognized as an epimerase as most CEs mainly exhibit an epimerization activity towards disaccharides. In recent years, several CEs have been found to possess bifunctional epimerization and isomerization activities. They can convert lactose into lactulose, a high-value disaccharide that is widely used in the food and pharmaceutical industries. However, the factors that determine the catalytic direction in CEs are still not clear. In this study, the crystal structures of three newly discovered CEs, CsCE (a bifunctional CE from Caldicellulosiruptor saccharolyticus), StCE (a bifunctional CE from Spirochaeta thermophila DSM 6578) and BtCE (a monofunctional CE from Bacillus thermoamylovorans B4166), were determined at 1.54, 2.05 and 1.80 Å resolution, respectively, in order to search for structural clues to their monofunctional/bifunctional properties. A comparative analysis of the hydrogen-bond networks in the active pockets of diverse CEs, YihS and mannose isomerase suggested that the histidine corresponding to His188 in CsCE is uniquely required to catalyse isomerization. By alignment of the apo and ligand-bound structures of diverse CEs, it was found that bifunctional CEs tend to have more flexible loops and a larger entrance around the active site, and that the flexible loop 148–181 in CsCE displays obvious conformational changes during ligand binding. It was speculated that the reconstructed molecular interactions of the flexible loop during ligand binding helped to motivate the ligands to stretch in a manner beneficial for isomerization. Further site-directed mutagenesis analysis of the flexible loop in CsCE indicated that the residue composition of the flexible loop did not greatly impact epimerization but affects isomerization. In particular, V177D and I178D mutants showed a 50% and 80% increase in isomerization activity over the wild type. This study provides new information about the structural characteristics involved in the catalytic properties of CEs, which can be used to guide future molecular modifications.


2020 ◽  
Vol 8 (9) ◽  
pp. 1394
Author(s):  
Tong Liu ◽  
Anna Schnürer ◽  
Johanna Björkmalm ◽  
Karin Willquist ◽  
Emma Kreuger

The use of straw for biofuel production is encouraged by the European Union. A previous study showed the feasibility of producing biomethane in upflow anaerobic sludge blanket (UASB) reactors using hydrolyzed, steam-pretreated wheat straw, before and after dark fermentation with Caldicellulosiruptor saccharolyticus, and lucerne. This study provides information on overall microbial community development in those UASB processes and changes related to acidification. The bacterial and archaeal community in granular samples was analyzed using high-throughput amplicon sequencing. Anaerobic digestion model no. 1 (ADM1) was used to predict the abundance of microbial functional groups. The sequencing results showed decreased richness and diversity in the microbial community, and decreased relative abundance of bacteria in relation to archaea, after process acidification. Canonical correspondence analysis showed significant negative correlations between the concentration of organic acids and three phyla, and positive correlations with seven phyla. Organic loading rate and total COD fed also showed significant correlations with microbial community structure, which changed over time. ADM1 predicted a decrease in acetate degraders after a decrease to pH ≤ 6.5. Acidification had a sustained effect on the microbial community and process performance.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 6767-6780 ◽  
Author(s):  
Jilin Xia ◽  
Yu Yu ◽  
Huimin Chen ◽  
Jia Zhou ◽  
Zhongbiao Tan ◽  
...  

Bifunctional cellulases with β-glucosidase (Bgl1), exoglucanase (Exo5), and carbohydrate-binding modules (CBMs) from Caldicellulosiruptor saccharolyticus were fused to yield several recombinant plasmids, Bgl1-CBM-Exo5, Bgl1-2CBM-Exo5, and Bgl1-3CBM-Exo5. The fused enzymes possessed both β-glucosidase and exoglucanase activities and were used to improve the degradation efficiency of lignocellulosic biomass. The optimal temperature of Bgl1-3CBM-Exo5 was 70 °C, which was the same as Bgl1, and the optimal temperature of the other two enzymes was 80 °C, which was the same as Exo5. The optimal pH of fused enzymes was 4 to 5, the same as Exo5, but the optimal pH of Bgl1 was 5.5. Compared with Bgl1-CBM-Exo5 and Bgl1-2CBM-Exo5, the hydrolysis efficiency of Bgl1-3CBM-Exo5 on sodium carboxymethyl cellulose (CMC-Na) was increased by 67% and 50%, respectively. The activities of these enzymes on CMC-Na were increased by 128 to 192% when 10 mM MnCl2 was added. Filter paper, microcrystalline cellulose (MCC), steam-pretreated rice straw, rice straw, and wheat straw were efficiently degraded by these fused enzymes. Specific activities of the fusion enzymes on MCC reached 34.4 to 76.4 U/μmol. The results indicated that bifunctional cellulases fused with CBMs were functional on cellulosic biomass, and CBMs contributed to further deconstruction of MCC and other natural substrates.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2519 ◽  
Author(s):  
Stevie Van Overtveldt ◽  
Ophelia Gevaert ◽  
Martijn Cherlet ◽  
Koen Beerens ◽  
Tom Desmet

Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of β-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of d-talose from d-galactose was discovered, a reaction not yet known to occur in nature. Moreover, the conversion is industrially relevant, as talose and its derivatives have been reported to possess important antimicrobial and anti-inflammatory properties. As the enzyme also catalyzes the keto-aldo isomerization of galactose to tagatose as a minor side reaction, the purity of talose was found to decrease over time. After process optimization, 23 g/L of talose could be obtained with a product purity of 86% and a yield of 8.5% (starting from 4 g (24 mmol) of galactose). However, higher purities and concentrations can be reached by decreasing and increasing the reaction time, respectively. In addition, two engineering attempts have also been performed. First, a mutant library of RmCE was created to try and increase the activity on monosaccharide substrates. Next, two residues from RmCE were introduced in the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) (S99M/Q371F), increasing the kcat twofold.


Sign in / Sign up

Export Citation Format

Share Document