Single fibre electromyography

1995 ◽  
pp. 278-282
Keyword(s):  
1993 ◽  
Vol 2 (5) ◽  
pp. 096369359300200 ◽  
Author(s):  
H.D. Wagner ◽  
S. Ling

An energy balance approach is proposed for the single fibre composite (or fragmentation) test, by which the degree of fibre-matrix bonding is quantified by means of the interfacial energy, rather than the interfacial shear strength, as a function of the fibre geometrical and mechanical characteristics, the stress transfer length, and the debonding length. The validity of the approach is discussed using E-glass fibres embedded in epoxy, both in the dry state and in the presence of hot distilled water.


1998 ◽  
Vol 29 (9-10) ◽  
pp. 1027-1034 ◽  
Author(s):  
P.F.M Meurs ◽  
B.A.G Schrauwen ◽  
P.J.G Schreurs ◽  
T Peijs
Keyword(s):  

2006 ◽  
Vol 42 (22) ◽  
pp. 1301 ◽  
Author(s):  
M. Fujiwara ◽  
H. Suzuki ◽  
N. Yoshimoto

2011 ◽  
Vol 471-472 ◽  
pp. 1034-1039 ◽  
Author(s):  
Zulkiflle Leman ◽  
S.M. Sapuan ◽  
S. Suppiah

Polymer composites using natural fibres as the reinforcing agents have found their use in many applications. However, they do suffer from a few limitations, due to the hydrophilicity of the natural fibres which results in low compatibility with the hydrophobic polymer matrices. This paper aims to determine the best sugar palm (Arenga pinnata) fibre surface treatment to improve the fibre-matrix interfacial adhesion. Fibre surface modifications were carried out by water retting process where the fibres were immersed in sea water, pond water and sewage water for the period of 30 days. The test samples were fabricated by placing a single fibre in an unsaturated polyester resin. Single-fibre pull-out tests showed that freshwater-treated fibres possessed the highest interfacial shear strength, followed by untreated fibres, sewage water-treated fibres, and sea water-treated fibres. Further surface analyses of the samples were performed using a Scanning Electron Microscope (SEM) and an Energy Dispersive X-ray Spectroscopy (EDS) system.


Sign in / Sign up

Export Citation Format

Share Document