OPTIMIZATION OF ACID GAS EMISSION CONTROL STRATEGIES IN THE UK POWER GENERATION INDUSTRY

1987 ◽  
pp. 109-116
Author(s):  
W.S. Kyte ◽  
J.R.P. Cooper
1990 ◽  
Vol 9 (3) ◽  
pp. 137-142 ◽  
Author(s):  
Wojciech Jozewicz ◽  
John C. S. Chang ◽  
Charles B. Sedman

2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


2001 ◽  
Author(s):  
J. C. Dettling ◽  
M. Larkin ◽  
J. Adomaitis ◽  
M. Galligan

2013 ◽  
Vol 830 ◽  
pp. 439-443 ◽  
Author(s):  
Yu Li ◽  
Chao Ci Li

Acid rain and greenhouse effect are the major air pollution problems in China, and the goals for the total emission control of NOx and total energy consumption control begin to move forward in the 12th five-year plan. NOx emission reduction and energy saving of coal-fired power plants are still put in a strategic position. Accordingly, it is of great significance to carry out power planning work, considering effect of NOx emission index and energy saving on power industry. In this study, a mixed 0-1 integer linear power generation expansion model based on total emission control of NOx and low carbon economy effect is developed for the first time, which can be used for studying the change of power structure, confirming the releasing emissions of NOx from power system for development and reducing energy consumption by total amount control of power coal consumption and CO2 emission growth rate. The model is applied to the power system in Heilongjiang province and the results indicate that the proposed model not only can meet the requirement of power generation expansion management, but also can help the power industry clear the economic impact of NOx emission reduction on self-development and achieve the energy saving target.


Author(s):  
Himani Himani ◽  
Navneet Sharma

<p><span>This paper describes the design and implementation of Hardware in the Loop (HIL) system D.C. motor based wind turbine emulator for the condition monitoring of wind turbines. Operating the HIL system, it is feasible to replicate the actual operative conditions of wind turbines in a laboratory environment. This method simply and cost-effectively allows evaluating the software and hardware controlling the operation of the generator. This system has been implemented in the LabVIEW based programs by using Advantech- USB-4704-AE Data acquisition card. This paper describes all the components of the systems and their operations along with the control strategies of WTE such as Pitch control and MPPT. Experimental results of the developed simulator using the test rig are benchmarked with the previously verified WT test rigs developed at the Durham University and the University of Manchester in the UK by using the generated current spectra of the generator. Electric subassemblies are most vulnerable to damage in practice, generator-winding faults have been introduced and investigated using the terminal voltage. This wind turbine simulator can be analyzed or reconfigured for the condition monitoring without the requirement of actual WT’s.</span></p>


2021 ◽  
Author(s):  
Daniel J Leybourne ◽  
Kate E Storer ◽  
Pete Berry ◽  
Steve Ellis

Graphical AbstractIn this article we describe two predictive models that can be used for the integrated management of wheat bulb fly. Our first model is a pest level prediction model and our second model predicts the number of shoots a winter wheat crop will achieve by the terminal spikelet developmental stage. We revise and update current wheat bulb fly damage thresholds and combine this with our two models to devise a tolerance-based decision support system that can be used to minimise the risk of crop damage by wheat bulb fly. SummaryWheat bulb fly, Delia coarctata, is an important pest of winter wheat in the UK, causing significant damage of up to 4 t ha-1. Accepted population thresholds for D. coarctata are 250 eggs m-2 for crops sown up to the end of October and 100 eggs m-2 for crops sown from November. Fields with populations of D. coarctata that exceed the thresholds are at higher risk of experiencing economically damaging pest infestations. In the UK, recent withdrawal of insecticides means that only a seed treatment is available for chemical control of D. coarctata, however this is only effective for late-sown crops (November onwards) and accurate estimations of annual population levels are required to ensure a seed treatment is applied if needed. As a result of the lack of post-drilling control strategies, the management of D. coarctata is becoming increasingly reliant on non-chemical methods of control. Control strategies that are effective in managing similar stem-boring pests of wheat include sowing earlier and using higher seed rates to produce crops with more shoots and greater tolerance to shoot damage.In this study we develop two predictive models that can be used for integrated D. coarctata management. The first is an updated pest level prediction model that predicts D. coarctata populations from meteorological parameters with a predictive accuracy of 70%, which represents a significant improvement on the previous D. coarctata population prediction model. Our second model predicts the maximum number of shoots for a winter wheat crop that would be expected at the terminal spikelet development stage. This shoot number model uses information about the thermal time from plant emergence to terminal spikelet, leaf phyllochron length, plant population, and sowing date to predict the degree of tolerance a crop will have against D. coarctata. The shoot number model was calibrated against data collected from five field experiments and tested against data from four experiments. Model testing demonstrated that the shoot number model has a predictive accuracy of 70%. A decision support system using these two models for the sustainable management of D. coarcata risk is described.


2020 ◽  
Author(s):  
Meng Gao ◽  
Kaili Lin ◽  
Shiqing Zhang ◽  
Ken kin lam Yung

&lt;p&gt;Severe wintertime PM2.5 pollution in Beijing has been receiving increasing worldwide attention, yet the decadal variations remain relatively unexplored. Combining field measurements and model simulations, we quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing overwinters of 2002-2016. Between the winters of 2011 and 2016, stringent emission control measures resulted in a 21% decrease in mean mass concentrations of PM2.5 in Beijing, with 7 fewer haze days per winter on average. Given the overestimation of PM2.5 by model, the effectiveness of stringent emission control measures might have been slightly overstated. With fixed emissions, meteorological conditions over the study period would have led to an increase of haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of recent climate. The unfavorable meteorological conditions are attributed to the weakening of the East Asia Winter Monsoon associated particularly with an increase in pressure associated with the Aleutian low.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document