scholarly journals Hardware-in-the-loop simulator of wind turbine emulator using labview

Author(s):  
Himani Himani ◽  
Navneet Sharma

<p><span>This paper describes the design and implementation of Hardware in the Loop (HIL) system D.C. motor based wind turbine emulator for the condition monitoring of wind turbines. Operating the HIL system, it is feasible to replicate the actual operative conditions of wind turbines in a laboratory environment. This method simply and cost-effectively allows evaluating the software and hardware controlling the operation of the generator. This system has been implemented in the LabVIEW based programs by using Advantech- USB-4704-AE Data acquisition card. This paper describes all the components of the systems and their operations along with the control strategies of WTE such as Pitch control and MPPT. Experimental results of the developed simulator using the test rig are benchmarked with the previously verified WT test rigs developed at the Durham University and the University of Manchester in the UK by using the generated current spectra of the generator. Electric subassemblies are most vulnerable to damage in practice, generator-winding faults have been introduced and investigated using the terminal voltage. This wind turbine simulator can be analyzed or reconfigured for the condition monitoring without the requirement of actual WT’s.</span></p>

Author(s):  
Kiran Tota-Maharaj ◽  
Alexander McMahon

AbstractWind power produces more electricity than any other form of renewable energy in the United Kingdom (UK) and plays a key role in decarbonisation of the grid. Although wind energy is seen as a sustainable alternative to fossil fuels, there are still several environmental impacts associated with all stages of the lifecycle of a wind farm. This study determined the material composition for wind turbines for various sizes and designs and the prevalence of such turbines over time, to accurately quantify waste generation following wind turbine decommissioning in the UK. The end of life stage is becoming increasingly important as a rapid rise in installation rates suggests an equally rapid rise in decommissioning rates can be expected as wind turbines reach the end of their 20–25-year operational lifetime. Waste data analytics were applied in this study for the UK in 5-year intervals, stemming from 2000 to 2039. Current practices for end of life waste management procedures have been analysed to create baseline scenarios. These scenarios have been used to explore potential waste management mitigation options for various materials and components such as reuse, remanufacture, recycling, and heat recovery from incineration. Six scenarios were then developed based on these waste management options, which have demonstrated the significant environmental benefits of such practices through quantification of waste reduction and greenhouse gas (GHG) emissions savings. For the 2015–2019 time period, over 35 kilotonnes of waste are expected to be generated annually. Overall waste is expected to increase over time to more than 1200 kilotonnes annually by 2039. Concrete is expected to account for the majority of waste associated with wind turbine decommissioning initially due to foundations for onshore turbines accounting for approximately 80% of their total weight. By 2035–2039, steel waste is expected to account for almost 50% of overall waste due to the emergence of offshore turbines, the foundations of which are predominantly made of steel.


Author(s):  
G Zheng ◽  
H Xu ◽  
X Wang ◽  
J Zou

This paper studies the operation of wind turbines in terms of three phases: start-up phase, power-generation phase, and shutdown phase. Relationships between the operational phase and control rules for the speed of rotation are derived for each of these phases. Taking into account the characteristics of the control strategies in the different operational phases, a global control strategy is designed to ensure the stable operation of the wind turbine in all phases. The results of simulations are presented that indicate that the proposed algorithm can control the individual phases when considered in isolation and also when they are considered in combination. Thus, a global control strategy for a wind turbine that is based on a single algorithm is presented which could have significant implications on the control and use of wind turbines.


Author(s):  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Konstantinos Gryllias

Abstract Under the pressure of climate change, renewable energy gradually replaces fossil fuels and plays nowadays a significant role in energy production. The O&M costs of wind turbines may easily reach up to 25% of the total leverised cost per kWh produced over the lifetime of the turbine for a new unit. Manufacturers and operators try to reduce O&M by developing new turbine designs and by adopting condition monitoring approaches. One of the most critical assembly of wind turbines is the gearbox. Gearboxes are designed to last till the end of asset's lifetime, according to the IEC 61400-4 standards but a recent study indicated that gearboxes might have to be replaced as early as 6.5 years. A plethora of sensor types and signal processing methodologies have been proposed in order to accurately detect and diagnose the presence of a fault but often the gearbox is equipped with a limited number of sensors and a simple global diagnostic indicator is demanded, being capable to detect globally various faults of different components. The scope of this paper is the application and comparison of a number of blind global diagnostic indicators which are based on Entropy, on Negentropy, on Sparsity and on Statistics. The performance of the indicators is evaluated on a wind turbine data set with two different bearing faults. Among the different diagnostic indicators Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy achieve the best results detecting blindly the two failure events.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1474 ◽  
Author(s):  
Francesco Castellani ◽  
Luigi Garibaldi ◽  
Alessandro Paolo Daga ◽  
Davide Astolfi ◽  
Francesco Natili

Condition monitoring of gear-based mechanical systems in non-stationary operation conditions is in general very challenging. This issue is particularly important for wind energy technology because most of the modern wind turbines are geared and gearbox damages account for at least the 20% of their unavailability time. In this work, a new method for the diagnosis of drive-train bearings damages is proposed: the general idea is that vibrations are measured at the tower instead of at the gearbox. This implies that measurements can be performed without impacting the wind turbine operation. The test case considered in this work is a wind farm owned by the Renvico company, featuring six wind turbines with 2 MW of rated power each. A measurement campaign has been conducted in winter 2019 and vibration measurements have been acquired at five wind turbines in the farm. The rationale for this choice is that, when the measurements have been acquired, three wind turbines were healthy, one wind turbine had recently recovered from a planetary bearing fault, and one wind turbine was undergoing a high speed shaft bearing fault. The healthy wind turbines are selected as references and the damaged and recovered are selected as targets: vibration measurements are processed through a multivariate Novelty Detection algorithm in the feature space, with the objective of distinguishing the target wind turbines with respect to the reference ones. The application of this algorithm is justified by univariate statistical tests on the selected time-domain features and by a visual inspection of the data set via Principal Component Analysis. Finally, a novelty index based on the Mahalanobis distance is used to detect the anomalous conditions at the damaged wind turbine. The main result of the study is that the statistical novelty of the damaged wind turbine data set arises clearly, and this supports that the proposed measurement and processing methods are promising for wind turbine condition monitoring.


2011 ◽  
Vol 58-60 ◽  
pp. 771-775
Author(s):  
Hai Bo Zhang ◽  
Liang Liu

According to the failure of wind turbines in operation, the failure cause and phenomenon of wind turbines is analyzed, combined with the reliability of wind turbine subsystems, measures aiming at cooperation parts and purchased parts are proposed, the reliability of the whole wind turbines is improved in a certain extent. At the same time, condition monitoring system can carry through the early detecting and diagnosing to potential component failure maintain. Besides, automatic lubrication system can realize accurate and timeliness lubrication, also can reduce maintenance workload, preserve correct lubrication and smooth running of all parts.


Author(s):  
Paul Middleditch ◽  
William Moindrot

The use of large cohorts in higher education poses significant challenges to institutions and lecturers required to convene in this setting. These challenges have been compounded by recent changes to higher education in the UK that have presented themselves in the form of a new fees structure, a push for student satisfaction and a technological tidal wave. This paper presents innovative approaches, from two large cohort economics courses running over three years at the University of Manchester, using methods of classroom interaction, peer instruction and social media to further engagement. We discuss data collected during this period of time through surveys and observations of how the students used these new learning tools. We have found that a move away from clickers toward utilisation of students’ own mobile devices, and in time the use of social media, meant that we were more able to adapt and evolve our teaching methods at a pace with the needs and interests of our students. We use this evidence to consider the implications and to provide advice to others teaching on large cohort courses whose ambition, like ours, is to make the large cohort class a more positive experience.


2015 ◽  
Vol 6 (2) ◽  
pp. 10
Author(s):  
Bavo De Maré ◽  
Jacob Sukumaran ◽  
Mia Loccufier ◽  
Patrick De Baets

While the number of offshore wind turbines is growing and turbines getting bigger and more expensive, the need for good condition monitoring systems is rising. From the research it is clear that failures of the gearbox, and in particular the gearwheels and bearings of the gearbox, have been responsible for the most downtime of a wind turbine. Gearwheels and bearings are being simulated in a multi-sensor environment to observe the wear on the surface.


1997 ◽  
Vol 06 (01) ◽  
pp. 101-107
Author(s):  
V.F. Hillier ◽  
A.L. Rector ◽  
C.J. Taylor ◽  
S. Kay

AbstractManchester University offered the first full time, undergraduate Medical Informatics degree programme in the UK. The B.Sc. in Medical Informatics was conceived in 1992 and its first cohort of students, taking the three year version, graduated in 1996; those students taking the four year version of the undergraduate degree will graduate in July 1997. The paper describes our somewhat turbulent experience of the first four years, highlighting both the difficulties and successes of launching an inter-disciplinary degree. First, the story of the programme’s development is given by way of an introduction and to establish a suitable context for describing the programme in more detail. Then, after presenting the aim and objectives of the programme, we describe the overall structure of the course, and reflect upon certain key issues for establishing Medical Informatics as a distinct, academic discipline.


2020 ◽  
Author(s):  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Konstantinos Gryllias

Abstract Under the pressure of climate change, renewable energy gradually replaces fossil fuels and plays nowadays a significant role in energy production. Among different types of energy sources, wind power covered 14% of the EU’s electricity demand in 2018. The Operations and Maintenance (O&M) costs of wind turbines may easily reach up to 20–25% of the total leverised cost per kWh produced over the lifetime of the turbine for a new unit. According to Wood Mackenzie Power & Renewables (WMPR) onshore wind farm operators are expected to spend nearly $15 billion on O&M services in 2019. Manufacturers and operators try to reduce O&M on one hand by developing new turbine designs and on the other hand by adopting condition monitoring approaches. One of the most critical and rather complex assembly of wind turbines is the gearbox. Gearboxes are designed to last till the end of asset’s lifetime, according to the IEC 61400-4 standards. On the other hand, a recent study over approximately 350 offshore wind turbines indicated that gearboxes might have to be replaced as early as 6.5 years. Therefore a plethora of sensor types and signal processing methodologies have been proposed in order to accurately detect and diagnose the presence of a fault. Among others, Envelope Analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated, usually after filtering around a selected frequency band excited by impacts due to the fault. Sometimes the gearbox is equipped with many acceleration sensors and its kinematics is clearly known. In these cases Cyclostationary Analysis and the corresponding methodologies, i.e. the Cyclic Spectral Correlation and the Cyclic Spectral Coherence, have been proposed as powerful tools. On the other hand often the gearbox is equipped with a limited number of sensors and a simple global diagnostic indicator is demanded, being capable to detect globally various faults of different components. The scope of this paper is the application and comparison of a number of blind global diagnostic indicators which are based on Entropy (Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy), on Negentropy (Infogram), on Sparsity (Sparse-L2/L1, Sparse-L1/L0, Sparse-Gini index) and on Statistics (Mean, Standard deviation, Kurtosis, etc.). The performance of the indicators is evaluated and compared on a wind turbine data set, consisted of vibration data captured by one accelerometer mounted on six 2.5 MW wind turbines, located in a wind park in northern Sweden, where two different bearing faults have been filed, for one wind turbine, during a period of 46 months. Among the different diagnostic indicators Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy achieve the best results detecting blindly the two failure events.


Author(s):  
Janis Faye Hutchinson

The making of an antiracist anthropologist is explored through the life experiences of a premier social scientist, Audrey Smedley. Examination of her childhood experiences and academic career provide a lens for understanding race and racism in the U S. Smedley earned degrees from the University of Michigan and the University of Manchester in the UK and also studied in Paris. This chapter also gives us a glimpse into the making of her classic Race in North America: Origin and Evolution of a Worldview.


Sign in / Sign up

Export Citation Format

Share Document