PV MODIFICATION TECHNIQUE AND PV INVERSION TO CORRECT THE INITIAL STATE OF THE NUMERICAL MODEL

2012 ◽  
Vol 28 (02) ◽  
pp. 73-81
Author(s):  
Xue-biao Zhang ◽  
Yu-long Yang ◽  
Yu-jun Liu

In shipyards, hull curved plate formation is an important stage with respect to productivity and accuracy control of curved plates. Because the power and its distribution of induction heat source are easier to control and reproduce, induction heating is expected to be applied in the line heating process. This paper studies the moveable induction heating process of steel plate and develops a numerical model of electromagneticthermal coupling analysis and the numerical results consistent with the experimental results. The numerical model is used to analyze the temperature changing rules and the influences on plate temperature field of heating speed of moveable induction heating of steel plate, and the following conclusions are drawn. First, the process of moveable induction heating of steel plate can be divided into three phases of initial state, quasi-steady state, and end state. The temperature difference between the top and bottom surfaces of the steel plate at the initial state is the biggest; it remains unchanged at the quasi-steady state and it is the smallest at the end state. Second, obvious end effect occurs when the edges of the steel plate are heated by the inductor, which causes a decrease in temperature difference between the top and bottom surfaces of the steel plate that is unfavorable for formation of pillow shape plates. Third, with the increase of heating speed, the temperature difference between the top and bottom surfaces of the steel plate increases gradually.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelaziz Khennouf ◽  
Mohamed Baheddi

Purpose The estimation of bearing capacity for shallow foundations in swelling soil is an important and complex context. The complexity is due to the unsaturated swelling soil related to the drying and humidification environment. Hence, a serious study is needed to evaluate the effect of swelling potential soil on the foundation bearing capacity. The purpose of this paper is to analyze the bearing capacity of a rough square foundation founded on a homogeneous swelling soil mass, subjected to vertical loads. Design/methodology/approach A proposed numerical model based on the simulation of the swelling pressure in the initial state, followed by an elastoplastic behavior model may be used to calculate the foundation bearing capacity. The analyses were carried out using the finite-difference software (FLAC 3 D) with an elastic perfectly plastic Mohr–Coulomb constitutive model. Moreover, the numerical results obtained are compared with the analytical solutions proposed in the literature. Findings The numerical results were in good agreement with the analytical solutions proposed in the literature. Also, reasonable capacity and performance of the proposed numerical model. Originality/value The proposed numerical model is capable to predict the bearing capacity of the homogeneous swelling soil mass loaded by a shallow foundation. Also, it will be of great use for geotechnical engineers and researchers in the field.


Author(s):  
Taha Benhaddou ◽  
Pierre Stephan ◽  
Alain Daidie ◽  
Clément Chirol ◽  
Jean-Baptiste Tuery

This paper presents the numerical study of double-lap bolted joint behavior. This type of joint is mainly used in aeronautical structures to transfer the given loads (by both adhesion and by deformation-shearing). Recent articles, based on experimental fatigue tests conducted by AIRBUS, have shown the beneficial effects of preloading on the fatigue life of these joints. Finite element analyses were performed using ABAQUS® to study the behavior of a double-lap single-bolted joint with different plate thicknesses (joint thickness = 0.5d, 1d, 1.5d, 2d 2.5d, 3d, 3.5d and 4d, where d is the bolt diameter). The numerical model provides several important results. In the case of static loads, elasto-plastic constitutive laws of the bolt and the plate materials allowed the process to be simulated on the basis of tension tests. Mechanical aspects of this type of assembly are numerically identified; from the initial state of adhesion to the state of plastic deformation of parts in contact including the stage of generalized slippage. We note that the fracture load increases slightly when the bolted joint is preloaded while the failure area remains the same. In the case of large plate thickness, the connection is subjected to significant bending stresses and this involves strong local plasticization associated with the loss of preload. In the case of cyclic loading, we consider a numerical model based on the simulation of one loading/unloading cycle. A noticeable decrease in initial preload is observed for certain configurations, in particular those with the largest plate thickness. This phenomenon is related to the effect of strain hardening of the bolt during the first loading cycles. Some experimental work by AIRBUS has shown that the fatigue life of assemblies is dependent on the material plate thicknesses. An extension to the case of a multiple-bolted joint (three rows of three bolts) is finally discussed and highlights the evolution of the rate of load transmission with respect to the applied load.


2009 ◽  
Vol 39 (6) ◽  
pp. 1486-1494 ◽  
Author(s):  
Angelo Rubino ◽  
Sergey Dotsenko ◽  
Peter Brandt

Abstract For the first time, an analytical theory and a very high-resolution, frontal numerical model, both based on the unsteady, nonlinear, reduced-gravity shallow water equations on a β plane, have been used to investigate aspects of the migration of homogeneous surface, frontal warm-core eddies on a β plane. Under the assumption that, initially, such vortices are surface circular anticyclones of paraboloidal shape and having both radial and azimuthal velocities that are linearly dependent on the radial coordinate (i.e., circular pulsons of the first order), approximate analytical expressions are found that describe the nonstationary trajectories of their centers of mass for an initial stage as well as for a mature stage of their westward migration. In particular, near-inertial oscillations are evident in the initial migration stage, whose amplitude linearly increases with time, as a result of the unbalanced vortex initial state on a β plane. Such an initial amplification of the vortex oscillations is actually found in the first stage of the evolution of warm-core frontal eddies simulated numerically by means of a frontal numerical model initialized using the shape and velocity fields of circular pulsons of the first order. In the numerical simulations, this stage is followed by an adjusted, complex nonstationary state characterized by a noticeable asymmetry in the meridional component of the vortex’s horizontal pressure gradient, which develops to compensate for the variations of the Coriolis parameter with latitude. Accordingly, the location of the simulated vortex’s maximum depth is always found poleward of the location of the simulated vortex’s center of mass. Moreover, during the adjusted stage, near-inertial oscillations emerge that largely deviate from the exactly inertial ones characterizing analytical circular pulsons: a superinertial and a subinertial oscillation in fact appear, and their frequency difference is found to be an increasing function of latitude. A comparison between vortex westward drifts simulated numerically at different latitudes for different vortex radii and pulsation strengths and the corresponding drifts obtained using existing formulas shows that, initially, the simulated vortex drifts correspond to the fastest predicted ones in many realistic cases. As time elapses, however, the development of a β-adjusted vortex structure, together with the effects of numerical dissipation, tend to slow down the simulated vortex drift.


Author(s):  
F. I. Grace

An interest in NiTi alloys with near stoichiometric composition (55 NiTi) has intensified since they were found to exhibit a unique mechanical shape memory effect at the Naval Ordnance Laboratory some twelve years ago (thus refered to as NITINOL alloys). Since then, the microstructural mechanisms associated with the shape memory effect have been investigated and several interesting engineering applications have appeared.The shape memory effect implies that the alloy deformed from an initial shape will spontaneously return to that initial state upon heating. This behavior is reported to be related to a diffusionless shear transformation which takes place between similar but slightly different CsCl type structures.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


Sign in / Sign up

Export Citation Format

Share Document