A Geometric Approach to Threshold Circuit Complexity

COLT ◽  
1991 ◽  
pp. 97-111 ◽  
Author(s):  
V. Roychowdhury ◽  
K.Y. Siu ◽  
A. Orlitsky ◽  
T. Kailath
2006 ◽  
Vol 18 (12) ◽  
pp. 2994-3008 ◽  
Author(s):  
Kei Uchizawa ◽  
Rodney Douglas ◽  
Wolfgang Maass

Circuits composed of threshold gates (McCulloch-Pitts neurons, or perceptrons) are simplified models of neural circuits with the advantage that they are theoretically more tractable than their biological counterparts. However, when such threshold circuits are designed to perform a specific computational task, they usually differ in one important respect from computations in the brain: they require very high activity. On average every second threshold gate fires (sets a 1 as output) during a computation. By contrast, the activity of neurons in the brain is much sparser, with only about 1% of neurons firing. This mismatch between threshold and neuronal circuits is due to the particular complexity measures (circuit size and circuit depth) that have been minimized in previous threshold circuit constructions. In this letter, we investigate a new complexity measure for threshold circuits, energy complexity, whose minimization yields computations with sparse activity. We prove that all computations by threshold circuits of polynomial size with entropy O(log n) can be restructured so that their energy complexity is reduced to a level near the entropy of circuit states. This entropy of circuit states is a novel circuit complexity measure, which is of interest not only in the context of threshold circuits but for circuit complexity in general. As an example of how this measure can be applied, we show that any polynomial size threshold circuit with entropy O(log n) can be simulated by a polynomial size threshold circuit of depth 3. Our results demonstrate that the structure of circuits that result from a minimization of their energy complexity is quite different from the structure that results from a minimization of previously considered complexity measures, and potentially closer to the structure of neural circuits in the nervous system. In particular, different pathways are activated in these circuits for different classes of inputs. This letter shows that such circuits with sparse activity have a surprisingly large computational power.


Author(s):  
Amir Moghimnejad ◽  
Shahrokh Parvizi

In this paper, we study circuit complexity for a free vector field of a [Formula: see text] gauge theory in Coulomb gauge, and Gaussian states. We introduce a quantum circuit model with Gaussian states, including reference and target states. Using Nielsen’s geometric approach, the complexity then can be found as the shortest geodesic in the space of states. This geodesic is based on the notion of geodesic distance on the Lie group of Bogoliubov transformations equipped with a right-invariant metric. We use the framework of the covariance matrix to compute circuit complexity between Gaussian states. We apply this framework to the free vector field in general dimensions where we compute the circuit complexity of the ground state of the Hamiltonian.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

1984 ◽  
Vol 45 (C6) ◽  
pp. C6-87-C6-94
Author(s):  
H. Reinhardt ◽  
R. Balian ◽  
Y. Alhassid

1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


2012 ◽  
Vol 11 (1) ◽  
pp. 1-24
Author(s):  
Emil Saucan ◽  
Eli Appleboim ◽  
Yehoshua Y. Zeevi
Keyword(s):  

2021 ◽  
pp. 1-15
Author(s):  
Jaewoon Kwon ◽  
Keunjun Choi ◽  
Frank C. Park

Sign in / Sign up

Export Citation Format

Share Document