scholarly journals Circuit complexity in U(1) gauge theory

Author(s):  
Amir Moghimnejad ◽  
Shahrokh Parvizi

In this paper, we study circuit complexity for a free vector field of a [Formula: see text] gauge theory in Coulomb gauge, and Gaussian states. We introduce a quantum circuit model with Gaussian states, including reference and target states. Using Nielsen’s geometric approach, the complexity then can be found as the shortest geodesic in the space of states. This geodesic is based on the notion of geodesic distance on the Lie group of Bogoliubov transformations equipped with a right-invariant metric. We use the framework of the covariance matrix to compute circuit complexity between Gaussian states. We apply this framework to the free vector field in general dimensions where we compute the circuit complexity of the ground state of the Hamiltonian.

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Bennet Windt ◽  
Alexander Jahn ◽  
Jens Eisert ◽  
Lucas Hackl

We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm to extremize arbitrary functions on these families of states. The method is based on notions of gradient descent attuned to the local geometry which also allows for the implementation of local constraints. The natural group action of the symplectic and orthogonal group enables us to compute the geometric gradient efficiently. While our parametrization of states is based on covariance matrices and linear complex structures, we provide compact formulas to easily convert from and to other parametrization of Gaussian states, such as wave functions for pure Gaussian states, quasiprobability distributions and Bogoliubov transformations. We review applications ranging from approximating ground states to computing circuit complexity and the entanglement of purification that have both been employed in the context of holography. Finally, we use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.


2020 ◽  
Vol 15 (1) ◽  
pp. 143-156
Author(s):  
Jean-François Biasse ◽  
Benjamin Pring

AbstractIn this paper we provide a framework for applying classical search and preprocessing to quantum oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce the quantum circuit-size from $O\left(2^{n/2}\cdot mC\right)$ (where C originates from the cost of implementing the quantum oracle) to $O(2^{n/2} \cdot m\sqrt{C})$ without the use of quantum ram, whilst also slightly reducing the number of required qubits.This framework captures a previous optimisation of Grover’s algorithm using preprocessing [21] applied to cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improvements on recent cryptanalysis [16] of SIKE [14] via Grover’s algorithm, demonstrating that the speedup applies to this attack and impacting upon quantum security estimates [16] incorporated into the SIKE specification [14].


2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


2006 ◽  
Vol 6 (3) ◽  
pp. 213-262 ◽  
Author(s):  
M.A. Nielsen

What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2^n). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call \emph{Pauli geodesics}, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.


COLT ◽  
1991 ◽  
pp. 97-111 ◽  
Author(s):  
V. Roychowdhury ◽  
K.Y. Siu ◽  
A. Orlitsky ◽  
T. Kailath

Author(s):  
Abel Molina ◽  
John Watrous

Yao's 1995 publication ‘Quantum circuit complexity’ in Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science , pp. 352–361, proved that quantum Turing machines and quantum circuits are polynomially equivalent computational models: t ≥ n steps of a quantum Turing machine running on an input of length n can be simulated by a uniformly generated family of quantum circuits with size quadratic in t , and a polynomial-time uniformly generated family of quantum circuits can be simulated by a quantum Turing machine running in polynomial time. We revisit the simulation of quantum Turing machines with uniformly generated quantum circuits, which is the more challenging of the two simulation tasks, and present a variation on the simulation method employed by Yao together with an analysis of it. This analysis reveals that the simulation of quantum Turing machines can be performed by quantum circuits having depth linear in t , rather than quadratic depth, and can be extended to variants of quantum Turing machines, such as ones having multi-dimensional tapes. Our analysis is based on an extension of method described by Arright, Nesme and Werner in 2011 in Journal of Computer and System Sciences 77 , 372–378. ( doi:10.1016/j.jcss.2010.05.004 ), that allows for the localization of causal unitary evolutions.


2010 ◽  
Vol 25 (28) ◽  
pp. 2457-2467
Author(s):  
SAURABH GUPTA ◽  
R. P. MALIK

We show that the previously known off-shell nilpotent [Formula: see text] and absolutely anticommuting (sb sab + sab sb = 0) Becchi–Rouet–Stora–Tyutin (BRST) transformations (sb) and anti-BRST transformations (sab) are the symmetry transformations of the appropriate Lagrangian densities of a four (3+1)-dimensional (4D) free Abelian 2-form gauge theory which do not explicitly incorporate a very specific constrained field condition through a Lagrange multiplier 4D vector field. The above condition, which is the analogue of the Curci–Ferrari restriction of the non-Abelian 1-form gauge theory, emerges from the Euler–Lagrange equations of motion of our present theory and ensures the absolute anticommutativity of the transformations s(a)b. Thus, the coupled Lagrangian densities, proposed in our present investigation, are aesthetically more appealing and more economical.


2004 ◽  
Vol 13 (04) ◽  
pp. 801-810 ◽  
Author(s):  
PAUL BRACKEN

Gauge theory and anomalies which arise under quantization of these theories are formulated using differential geometric methods. The Wess–Zumino conditions are developed and some other relevant geometric properties of anomalies are mentioned. An elementary derivation of the non-Abelian anomaly in 2n dimensions is presented using this formalism.


2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Lucas Hackl ◽  
Tommaso Guaita ◽  
Tao Shi ◽  
Jutho Haegeman ◽  
Eugene Demler ◽  
...  

We present a systematic geometric framework to study closed quantum systems based on suitably chosen variational families. For the purpose of (A) real time evolution, (B) excitation spectra, (C) spectral functions and (D) imaginary time evolution, we show how the geometric approach highlights the necessity to distinguish between two classes of manifolds: Kähler and non-Kähler. Traditional variational methods typically require the variational family to be a Kähler manifold, where multiplication by the imaginary unit preserves the tangent spaces. This covers the vast majority of cases studied in the literature. However, recently proposed classes of generalized Gaussian states make it necessary to also include the non-Kähler case, which has already been encountered occasionally. We illustrate our approach in detail with a range of concrete examples where the geometric structures of the considered manifolds are particularly relevant. These go from Gaussian states and group theoretic coherent states to generalized Gaussian states.


Sign in / Sign up

Export Citation Format

Share Document