Multi-Scale and Multi-Physics Modeling of the Contact Interface Using DEM and Coupled DEM-FEM Approach

Author(s):  
Mohamed Guessasma ◽  
Valery Bourny ◽  
Hamza Haddad ◽  
Charles Machado ◽  
Eddy Chevallier ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Orkun Furat ◽  
Lukas Petrich ◽  
Donal P. Finegan ◽  
David Diercks ◽  
Francois Usseglio-Viretta ◽  
...  

AbstractAccurately capturing the architecture of single lithium-ion electrode particles is necessary for understanding their performance limitations and degradation mechanisms through multi-physics modeling. Information is drawn from multimodal microscopy techniques to artificially generate LiNi0.5Mn0.3Co0.2O2 particles with full sub-particle grain detail. Statistical representations of particle architectures are derived from X-ray nano-computed tomography data supporting an ‘outer shell’ model, and sub-particle grain representations are derived from focused-ion beam electron backscatter diffraction data supporting a ‘grain’ model. A random field model used to characterize and generate the outer shells, and a random tessellation model used to characterize and generate grain architectures, are combined to form a multi-scale model for the generation of virtual electrode particles with full-grain detail. This work demonstrates the possibility of generating representative single electrode particle architectures for modeling and characterization that can guide synthesis approaches of particle architectures with enhanced performance.


2018 ◽  
Vol 73 (3) ◽  
pp. 151-157 ◽  
Author(s):  
Jing Zhang ◽  
Yi Zhang ◽  
Weng Hoh Lee ◽  
Linmin Wu ◽  
Hyun-Hee Choi ◽  
...  

Author(s):  
J. Armand ◽  
L. Pesaresi ◽  
L. Salles ◽  
C. W. Schwingshackl

Accurate prediction of the vibration response of aircraft engine assemblies is of great importance when estimating both the performance and the lifetime of its individual components. In the case of underplatform dampers, for example, the motion at the frictional interfaces can lead to a highly nonlinear dynamic response and cause fretting wear at the contact. The latter will change the contact conditions of the interface and consequently impact the nonlinear dynamic response of the entire assembly. Accurate prediction of the nonlinear dynamic response over the lifetime of the assembly must include the impact of fretting wear. A multi-scale approach that incorporates wear into the nonlinear dynamic analysis is proposed, and its viability is demonstrated for an underplatform damper system. The nonlinear dynamic response is calculated with a multiharmonic balance approach, and a newly developed semi-analytical contact solver is used to obtain the contact conditions at the blade-damper interface with high accuracy and low computational cost. The calculated contact conditions are used in combination with the energy wear approach to compute the fretting wear at the contact interface. The nonlinear dynamic model of the blade-damper system is then updated with the worn profile and its dynamic response is recomputed. A significant impact of fretting wear on the nonlinear dynamic behaviour of the blade-damper system was observed, highlighting the sensitivity of the nonlinear dynamic response to changes at the contact interface. The computational speed and robustness of the adopted multi-scale approach are demonstrated.


2019 ◽  
Vol 27 (2) ◽  
pp. 025009 ◽  
Author(s):  
Carl Herriott ◽  
Xuxiao Li ◽  
Nadia Kouraytem ◽  
Vahid Tari ◽  
Wenda Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document