Effects of biochar amendments on soil phosphorus transformation in agricultural soils

2019 ◽  
pp. 131-172 ◽  
Author(s):  
Fayong Li ◽  
Xinqiang Liang ◽  
Christophe Niyungeko ◽  
Tao Sun ◽  
Feng Liu ◽  
...  
2020 ◽  
Vol 270 ◽  
pp. 110980
Author(s):  
Muhammad Shoaib Rana ◽  
Cheng Xiao Hu ◽  
Muhammad Shaaban ◽  
Muhammad Imran ◽  
Javaria Afzal ◽  
...  

2020 ◽  
Vol 732 ◽  
pp. 139295 ◽  
Author(s):  
Hongzhi Zhang ◽  
Leilei Shi ◽  
Haibo Lu ◽  
Yuanhu Shao ◽  
Shirong Liu ◽  
...  

2011 ◽  
Vol 91 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Peter Kleinman ◽  
Andrew Sharpley ◽  
Anthony Buda ◽  
Richard McDowell ◽  
Arthur Allen

Kleinman, P. J. A., Sharpley, A. N., Budda, A. R., McDowell, R. W. and Allen, A. L. 2011. Soil controls of phosphorus in runoff: Management barriers and opportunities. Can. J. Soil Sci. 91: 329–338. The persistent problem of eutrophication, the biological enrichment of surface waters, has produced a vast literature on soil phosphorus (P) effects on runoff water quality. This paper considers the mechanisms controlling soil P transfers from agricultural soils to runoff waters, and the management of these transfers. Historical emphases on soil conservation and control of sediment delivery to surface waters have demonstrated that comprehensive strategies to mitigate sediment-bound P transfer can produce long-term water quality improvements at a watershed scale. Less responsive are dissolved P releases from soils that have historically received P applications in excess of crop requirements. While halting further P applications to such soils may prevent dissolved P losses from growing, the desorption of P from soils that is derived from historical inputs, termed here as “legacy P”, can persist for long periods of time. Articulating the role of legacy P in delaying the response of watersheds to remedial programs requires more work, delivering the difficult message that yesterday's sinks of P may be today's sources. Even legacy sources of P that occur in low concentration relative to agronomic requirement can support significant loads of P in runoff under the right hydrologic conditions. Strategies that take advantage of the capacity of soils to buffer dissolved P losses, such as periodic tillage to diminish severe vertical stratification of P in no-till soils, offer short-term solutions to mitigating P losses. In some cases, more aggressive strategies are required to mitigate both short-term and legacy P losses.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Christine Alewell ◽  
Bruno Ringeval ◽  
Cristiano Ballabio ◽  
David A. Robinson ◽  
Panos Panagos ◽  
...  

Abstract Soil phosphorus (P) loss from agricultural systems will limit food and feed production in the future. Here, we combine spatially distributed global soil erosion estimates (only considering sheet and rill erosion by water) with spatially distributed global P content for cropland soils to assess global soil P loss. The world’s soils are currently being depleted in P in spite of high chemical fertilizer input. Africa (not being able to afford the high costs of chemical fertilizer) as well as South America (due to non-efficient organic P management) and Eastern Europe (for a combination of the two previous reasons) have the highest P depletion rates. In a future world, with an assumed absolute shortage of mineral P fertilizer, agricultural soils worldwide will be depleted by between 4–19 kg ha−1 yr−1, with average losses of P due to erosion by water contributing over 50% of total P losses.


Soil Research ◽  
2013 ◽  
Vol 51 (5) ◽  
pp. 427 ◽  
Author(s):  
R. J. Dodd ◽  
R. W. McDowell ◽  
L. M. Condron

Long-term application of phosphorus (P) fertilisers to agricultural soils can lead to in the accumulation of P in soil. Determining the rate of decline in soil P following the cessation of P fertiliser inputs is critical to evaluating the potential for reducing P loss to surface waters. The aim of this study was to use isotope exchange kinetics to investigate the rate of decline in soil P pools and the distribution of P within these pools in grazed grassland soils following a halt to P fertiliser application. Soils were sourced from three long-term grassland trials in New Zealand, two of which were managed as sheep-grazed pasture and one where the grass was regularly cut and removed. There was no significant change in total soil P over the duration of each trial between any of the treatments, although there was a significant decrease in total inorganic P on two of the sites accompanied by an increase in the organic P pool, suggesting that over time P was becoming occluded within organic matter, reducing the plant availability. An equation was generated using the soil-P concentration exchangeable within 1 min (E1 min) and P retention of the soil to predict the time it would take for the water-extractable P (WEP) concentration to decline to a target value protective of water quality. This was compared with a similar equation generated in the previous study, which used the initial Olsen-P concentration and P retention as a predictor. The use of E1 min in place of Olsen-P did not greatly improve the fit of the model, and we suggest that the use of Olsen-P is sufficient to predict the rate of decline in WEP. Conversely, pasture production data, available for one of the trial sites, suggest that E1 min may be a better predictor of dry matter yield than Olsen-P.


2006 ◽  
Vol 78 (4) ◽  
pp. 791-807 ◽  
Author(s):  
Melissa M. Arcand ◽  
Kim D. Schneider

Deficiency in plant-available phosphorus is considered to be a major limiting factor to food production in many agricultural soils. Mineral resources are necessary to restore soil phosphorus content. In regions where conventional fertilizers are not used due to cost limitations or to mitigate adverse environmental effects, local sources of phosphate rock are being increasingly recognized for potential use as alternative phosphorus fertilizers. The main obstacle associated with using directly applied ground phosphate rock is that the phosphate released is often unable to supply sufficient plant-available phosphorus for crop uptake. Plantand microbial-based mechanisms are low-cost, appropriate technologies to enhance the solubilization and increase the agronomic effectiveness of phosphate rock. Common mechanisms of phosphate rock dissolution including proton and organic acid production will be reviewed for both plants and microorganisms. This review will also address possibilities for future research directions and applications to agriculture, as well as highlight ongoing research at the University of Guelph, Guelph, Canada.


2018 ◽  
pp. 1-9
Author(s):  
Md. Zulfikar Khan ◽  
Md. Ariful Islam ◽  
Russel Hossin ◽  
Md. Sadiqul Amin

A laboratory incubation experiment was carried out to investigate the influence of soil salinity and organic matter on inorganic phosphorus transformation with times in two different soil series such as Barisal and Dumuria located in Ganges Tidal Floodplain sites of Bangladesh. Two representative soil samples were collected from surface soil (0-15 cm) with composite sampling. The salinity and organic matter treatments were 4 dS m-1 and 5 t ha-1 (decomposed cow dung) with three replications. The treated soils were then incubated in the laboratory at field capacity moisture condition. To determine the transformation of different forms of inorganic P, sampling was done for 0, 7, 15 and 30 days. Different forms of inorganic P such as soluble and exchangeable phosphorus (SE-P), iron and aluminium bound phosphorus (Fe and Al-P), calcium bound phosphorus (Ca-P) and residual phosphorus (RE-P) were determined at different days of incubation. For Barisal soil series, the sequence of different forms of inorganic P was Ca-P>RE-P>Fe and Al-P>SE-P according to their amount. For Dumuria soil series, the sequence was Ca-P>RE-P>Fe and Al-P>SE-P, respectively. The sequence clearly indicates that the soluble and exchangeable P increases with time due to a combination of salinity and decomposed organic matter which increases the uptake of P and ultimately increases the yield. The changes were statistically significant (P < 0.001) in the case of all three soils.


2020 ◽  
Vol 12 (13) ◽  
pp. 5311
Author(s):  
Piroska Kassai ◽  
Gergely Tóth

Over-fertilization before 1989 resulted in high phosphorus levels in agricultural soils of Hungary, but the accumulated reserves seem to have been depleted in recent decades due to under-fertilization. The aims of this study were to map the spatial pattern of phosphorus level and its change in the last few decades in Hungary to document the effect of fertilization and underlying socio-economic conditions on P concentrations, to identify the role of soil properties in changing soil soluble P and to quantify the total amount of soluble phosphorus level change in agricultural areas in the last few decades in the country. Two soil datasets were analyzed (National Pedological and Crop Production Database of Hungary and the Land Use/Land Cover Area Frame Survey, LUCAS, topsoil dataset), representing the status of soil nutrient contents in 1989 and in 2009. The measured phosphorus concentrations were compared to the reported phosphorus fertilization inputs. We also evaluated the effect of some important soil properties on soluble phosphorus content and on its change. We produced three maps by using kriging methods: soluble phosphorus levels in 1989, in 2009 and the change between 1989 and 2009. The results confirmed that phosphorus levels in agricultural areas depend mainly on agricultural use, while soil physical characteristics play a smaller role. Nevertheless, we demonstrated that the decrease in soil phosphorus levels was significantly influenced by soil chemistry (pH and CaCO3 content). The mean soluble phosphorus level was 108 mg/kg in 1989 and 28 mg/kg in 2009, and the median values were 100 and 22. The total loss (caused by harvesting, fixation and erosion) is ~1.5 million tons of soluble phosphorus, which is twice as much as the reported phosphorus balances indicated. In conclusion, our results show that approximately 50% of agricultural areas in Hungary are characterized by a very low supply of phosphorus (according to the latest data), posing a risk of nutrient depletion in these areas.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yueming Liang ◽  
Mingjin Li ◽  
Fujing Pan ◽  
Jiangming Ma ◽  
Zhangqi Yang ◽  
...  

phoD-harboring microorganisms facilitate mineralization of organic phosphorus (P), while their role in the regulation of soil P turnover under P-limited conditions in Pinus massoniana plantations is poorly understood. The aim of the present study was to investigate the effects of stand age and season on soil P fractions and phoD-harboring microorganism communities in a chronosequence of Chinese P. massoniana plantations including 3, 19, and 58 years. The soil P fractions (i.e., CaCl2-P, citrate-P, enzyme-P, and HCl-P) varied seasonally, with the higher values observed in the rainy season. The concentrations of the fractions were higher in old plantation (OP) soils and lower in young planation (YP) soils in both seasons. The OTU abundances were negatively correlated with total available P concentration, while were positively correlated with alkaline phosphomonoesterase (ALP) activity at 0–10 cm soil depth. The results indicate that phoD-harboring microorganisms have great potential to mineralize organic P under P-poor conditions and highlights those microorganisms are indicators of P bioavailability in P. massoniana plantations.


Sign in / Sign up

Export Citation Format

Share Document