Structure-guided rational design of the substrate specificity and catalytic activity of an enzyme

Author(s):  
Jung Min Choi ◽  
Hak-Sung Kim
Author(s):  
Hans C. Hendrikse ◽  
Alejo Aguirre ◽  
Arno van der Weijden ◽  
Anne S. Meeussen ◽  
Fernanda Neira D’Angelo ◽  
...  

2019 ◽  
Vol 126 ◽  
pp. 229-237 ◽  
Author(s):  
Naeem Mahmood Ashraf ◽  
Akshaya Krishnagopal ◽  
Aadil Hussain ◽  
David Kastner ◽  
Ahmed Mahmoud Mohammed Sayed ◽  
...  

2003 ◽  
Vol 218 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Hong Soon Chin ◽  
Janet Sim ◽  
Keng Ing Seah ◽  
Tiow Suan Sim

1994 ◽  
Vol 299 (3) ◽  
pp. 839-844 ◽  
Author(s):  
A Palumbo ◽  
M d'Ischia ◽  
G Misuraca ◽  
L De Martino ◽  
G Prota

A melanogenic enzyme catalysing the rearrangement of dopachrome has been identified in the ejected ink of the cuttlefish Sepia officinalis. This enzyme occurs as a heat-labile protein which co-migrates with tyrosinase under a variety of chromatographic and electrophoretic conditions. On SDS/PAGE it shows like a single band with an approx. molecular mass of 85 kDa. The enzyme possesses high substrate specificity, acting on L-dopachrome (Km = 1 mM at pH 6.8) and on L-alpha-methyl-dopachrome, but not on D-dopachrome, L-dopachrome methyl ester, dopaminochrome and adrenochrome. Significant inhibition of the catalytic activity was observed with tropolone and L-mimosine. H.p.1.c. analysis of the enzyme-catalysed rearrangement of L-dopachrome revealed the quantitative formation of the decarboxylated product, 5,6-dihydroxyindole. These results point to marked differences between melanogenesis in cephalopod pigment cells and in melanocytes, which may have important implications in relation to the use of sepiomelanin as a model for studies of mammalian melanins.


2018 ◽  
Vol 1 (3) ◽  
pp. 1150-1163 ◽  
Author(s):  
Wei Cai ◽  
Qin Zhong ◽  
Dongyu Wang ◽  
Yunxia Zhao ◽  
Mindong Chen ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 747
Author(s):  
Samah Hashim Albayati ◽  
Malihe Masomian ◽  
Siti Nor Hasmah Ishak ◽  
Mohd Shukuri bin Mohamad Ali ◽  
Adam Leow Thean ◽  
...  

Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.


FEBS Letters ◽  
2002 ◽  
Vol 518 (1-3) ◽  
pp. 93-96 ◽  
Author(s):  
Christian Conrad ◽  
Jens Guido Schmitt ◽  
Elena Evguenieva-Hackenberg ◽  
Gabriele Klug

Sign in / Sign up

Export Citation Format

Share Document