scholarly journals Main Structural Targets for Engineering Lipase Substrate Specificity

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 747
Author(s):  
Samah Hashim Albayati ◽  
Malihe Masomian ◽  
Siti Nor Hasmah Ishak ◽  
Mohd Shukuri bin Mohamad Ali ◽  
Adam Leow Thean ◽  
...  

Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10143
Author(s):  
Mohammed Alaidarous

Several bacterial pathogens produce Toll/interleukin-1 receptor (TIR) domain-containing protein homologs that are important for subverting the Toll-like receptor (TLR) signaling cascades in hosts. Consequently, promoting the persistence and survival of the bacterial pathogens. However, the exact molecular mechanisms elucidating the functional characteristics of these bacterial proteins are not clear. Physicochemical and homology modeling characterization studies have been conducted to predict the conditions suitable for the stability and purification of these proteins and to predict their structural properties. The outcomes of these studies have provided important preliminary data for the drug discovery pipeline projects. Here, using in silico physicochemical and homology modeling tools, we have reported the primary, secondary and tertiary structural characteristics of multiple N-terminal domains of selected bacterial TIR domain-containing proteins (Tcps). The results show variations between the primary amino acid sequences, secondary structural components and three-dimensional models of the proteins, suggesting the role of different molecular mechanisms in the functioning of these proteins in subverting the host immune system. This study could form the basis of future experimental studies advancing our understanding of the molecular basis of the inhibition of the host immune response by the bacterial Tcps.


1993 ◽  
Vol 292 (1) ◽  
pp. 69-74 ◽  
Author(s):  
W Asmara ◽  
U Murdiyatmo ◽  
A J Baines ◽  
A T Bull ◽  
D J Hardman

The chemical modification of L-2-haloacid halidohydrolase IVa (Hdl IVa), originally identified in Pseudomonas cepacia MBA4, produced as a recombinant protein in Escherichia coli DH5 alpha, led to the identification of histidine and arginine as amino acid residues likely to play a part in the catalytic mechanism of the enzyme. These results, together with DNA sequence and analyses [Murdiyatmo, Asmara, Baines, Bull and Hardman (1992) Biochem. J. 284, 87-93] provided the basis for the rational design of a series of random- and site-directed-mutagenesis experiments of the Hdl IVa structural gene (hdl IVa). Subsequent apparent kinetic analyses of purified mutant enzymes identified His-20 and Arg-42 as the key residues in the activity of this halidohydrolase. It is also proposed that Asp-18 is implicated in the functioning of the enzyme, possibly by positioning the correct tautomer of His-20 for catalysis in the enzyme-substrate complex and stabilizing the protonated form of His-20 in the transition-state complex. Comparison of conserved amino acid sequences between the Hdl IVa and other halidohydrolases suggests that L-2-haloacid halidohydrolases contain conserved amino acid sequences that are not found in halidohydrolases active towards both D- and L-2-monochloropropionate.


2010 ◽  
Vol 82 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Dunming Zhu ◽  
Ling Hua

Although "Prelog’s rule" and "two hydrophobic binding pockets" model have been used to predict and explain the stereoselectivity of enzymatic ketone reduction, the molecular basis of stereorecognition by carbonyl reductases has not been well understood. The stereoselectivity is not only determined by the structures of enzymes and substrates, but also affected by the reaction conditions such as temperature and reaction medium. Structural analysis coupled with site-directed mutagenesis of stereocomplementary carbonyl reductases readily reveals the key elements of controlling stereoselectivity in these enzymes. In our studies, enzyme-substrate docking and molecular modeling have been engaged to understand the enantioselectivity diversity of the carbonyl reductase from Sporobolomyces salmonicolor (SSCR), and to guide site-saturation mutagenesis for altering the enantioselectivity of this enzyme. These studies provide valuable information for our understanding of how the residues involved in substrate binding affect the orientation of bound substrate, and thus control the reaction stereoselectivity. The in silico docking-guided semi-rational approach should be a useful methodology for discovery of new carbonyl reductases.


2012 ◽  
Vol 302 (1) ◽  
pp. C257-C266 ◽  
Author(s):  
Pedro Cano-Soldado ◽  
Edurne Gorraitz ◽  
Ekaitz Errasti-Murugarren ◽  
F. Javier Casado ◽  
M. Pilar Lostao ◽  
...  

SLC28 genes, encoding concentrative nucleoside transporter proteins (CNT), show little genetic variability, although a few single nucleotide polymorphisms (SNPs) have been associated with marked functional disturbances. In particular, human CNT1S546P had been reported to result in negligible thymidine uptake. In this study we have characterized the molecular mechanisms responsible for this apparent loss of function. The hCNT1S546P variant showed an appropriate endoplasmic reticulum export and insertion into the plasma membrane, whereas loss of nucleoside translocation ability affected all tested nucleoside and nucleoside-derived drugs. Site-directed mutagenesis analysis revealed that it is the lack of the serine residue itself responsible for the loss of hCNT1 function. This serine residue is highly conserved, and mutation of the analogous serine in hCNT2 (Ser541) and hCNT3 (Ser568) resulted in total and partial loss of function, respectively. Moreover, hCNT3, the only member that shows a 2Na+/1 nucleoside stoichiometry, showed altered Na+ binding properties associated with a shift in the Hill coefficient, consistent with one Na+ binding site being affected by the mutation. Two-electrode voltage-clamp studies using the hCNT1S546P mutant revealed the occurrence of Na+ leak, which was dependent on the concentration of extracellular Na+ indicating that, although the variant is unable to transport nucleosides, there is an uncoupled sodium transport.


2020 ◽  
Vol 17 (6) ◽  
pp. 2827-2832
Author(s):  
Mitra Mirzaei ◽  
Per Berglund

ωTransaminases are pyridoxal-5-phosphat (PLP) dependent enzymes having the ability to catalyze the transference of an amino group to a keto compound. These enzymes are used for production of chiral amines which are important building blocks in pharmaceutical industry. There is often a need to improve enzyme properties such as enzyme stability, enzyme specificity and to decrease substrate-product inhibition. Here, protein engineering was applied to improve the enzyme activity of the enzyme from Chromobacterium violaceum Rational-design and site-directed mutagenesis were applied on position of (W60) in the active site of the enzyme. Different mutated enzyme variants such as W60H, W60F and W60Y were made. Also, the enantiopreference of the wild type enzyme was reversed to produce (R)-chiral amines. For this aim, a screening assay was followed by semi-rational approach and saturation mutagenesis in the active site of the enzyme. Creating the mutated enzyme libraries resulted to obtaining two enzyme variants. Their properties were low enantiopreference towards formations of (R)-enantiopreference and low specific constant ratio between fast and slow enantiomers (Evalue around one).


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Taeho Kim ◽  
Robert Flick ◽  
Joseph Brunzelle ◽  
Alex Singer ◽  
Elena Evdokimova ◽  
...  

ABSTRACT The nonnatural alcohol 1,3-butanediol (1,3-BDO) is a valuable building block for the synthesis of various polymers. One of the potential pathways for the biosynthesis of 1,3-BDO includes the biotransformation of acetaldehyde to 1,3-BDO via 3-hydroxybutanal (3-HB) using aldolases and aldo-keto reductases (AKRs). This pathway requires an AKR selective for 3-HB, but inactive toward acetaldehyde, so it can be used for one-pot synthesis. In this work, we screened more than 20 purified uncharacterized AKRs for 3-HB reduction and identified 10 enzymes with significant activity and nine proteins with detectable activity. PA1127 from Pseudomonas aeruginosa showed the highest activity and was selected for comparative studies with STM2406 from Salmonella enterica serovar Typhimurium, for which we have determined the crystal structure. Both AKRs used NADPH as a cofactor, reduced a broad range of aldehydes, and showed low activities toward acetaldehyde. The crystal structures of STM2406 in complex with cacodylate or NADPH revealed the active site with bound molecules of a substrate mimic or cofactor. Site-directed mutagenesis of STM2406 and PA1127 identified the key residues important for the activity against 3-HB and aromatic aldehydes, which include the residues of the substrate-binding pocket and C-terminal loop. Our results revealed that the replacement of the STM2406 Asn65 by Met enhanced the activity and the affinity of this protein toward 3-HB, resulting in a 7-fold increase in k cat/Km . Our work provides further insights into the molecular mechanisms of the substrate selectivity of AKRs and for the rational design of these enzymes toward new substrates. IMPORTANCE In this study, we identified several aldo-keto reductases with significant activity in reducing 3-hydroxybutanal to 1,3-butanediol (1,3-BDO), an important commodity chemical. Biochemical and structural studies of these enzymes revealed the key catalytic and substrate-binding residues, including the two structural determinants necessary for high activity in the biosynthesis of 1,3-BDO. This work expands our understanding of the molecular mechanisms of the substrate selectivity of aldo-keto reductases and demonstrates the potential for protein engineering of these enzymes for applications in the biocatalytic production of 1,3-BDO and other valuable chemicals.


2021 ◽  
Vol 118 (49) ◽  
pp. e2113573118
Author(s):  
Carlos F. Rodriguez ◽  
Paloma Escudero-Bravo ◽  
Lucía Díaz ◽  
Paola Bartoccioni ◽  
Carmen García-Martín ◽  
...  

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo–electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


2006 ◽  
Vol 188 (17) ◽  
pp. 6179-6183 ◽  
Author(s):  
Jung-Kul Lee ◽  
Ee-Lui Ang ◽  
Huimin Zhao

ABSTRACT Molecular modeling and mutational analysis (site-directed mutagenesis and saturation mutagenesis) were used to probe the molecular determinants of the substrate specificity of aminopyrrolnitrin oxygenase (PrnD) from Pseudomonas fluorescens Pf-5. There are 17 putative substrate-contacting residues, and mutations at two of the positions, positions 312 and 277, could modulate the enzyme substrate specificity separately or in combination. Interestingly, several of the mutants obtained exhibited higher catalytic efficiency (approximately two- to sevenfold higher) with the physiological substrate aminopyrrolnitrin than the wild-type enzyme exhibited.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yeongjin Yun ◽  
Sangjun Han ◽  
Yoon Sik Park ◽  
Hyunjae Park ◽  
Dogyeong Kim ◽  
...  

Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems; however, no effective inhibitors are currently clinically available. MBLs are classified into three subclasses: B1, B2, and B3. Although the amino acid sequences of MBLs are varied, their overall scaffold is well conserved. In this study, we systematically studied the primary sequences and crystal structures of all subclasses of MBLs, especially the core scaffold, the zinc-coordinating residues in the active site, and the substrate-binding pocket. We presented the conserved structural features of MBLs in the same subclass and the characteristics of MBLs of each subclass. The catalytic zinc ions are bound with four loops from the two central β-sheets in the conserved αβ/βα sandwich fold of MBLs. The three external loops cover the zinc site(s) from the outside and simultaneously form a substrate-binding pocket. In the overall structure, B1 and B2 MBLs are more closely related to each other than they are to B3 MBLs. However, B1 and B3 MBLs have two zinc ions in the active site, while B2 MBLs have one. The substrate-binding pocket is different among all three subclasses, which is especially important for substrate specificity and drug resistance. Thus far, various classes of β-lactam antibiotics have been developed to have modified ring structures and substituted R groups. Currently available structures of β-lactam-bound MBLs show that the binding of β-lactams is well conserved according to the overall chemical structure in the substrate-binding pocket. Besides β-lactam substrates, B1 and cross-class MBL inhibitors also have distinguished differences in the chemical structure, which fit well to the substrate-binding pocket of MBLs within their inhibitory spectrum. The systematic structural comparison among B1, B2, and B3 MBLs provides in-depth insight into their substrate specificity, which will be useful for developing a clinical inhibitor targeting MBLs.


Glycobiology ◽  
2019 ◽  
Vol 29 (11) ◽  
pp. 765-775 ◽  
Author(s):  
Rakesh Joshi ◽  
Johanna Trinkl ◽  
Annika Haugeneder ◽  
Katja Härtl ◽  
Katrin Franz-Oberdorf ◽  
...  

Abstract Uridine diphosphate-dependent glycosyltransferases (UGTs) catalyze the transfer of a diversity of sugars to several acceptor molecules and often exhibit distinct substrate specificity. Modulation of glycosyltransferases for increased catalytic activity and altered substrate or product specificity are the key manipulations for the biotechnological use of glycosyltransferases in various biosynthetic processes. Here, we have engineered the binding pocket of three previously characterized Vitis vinifera glycosyltransferases, UGT88F12, UGT72B27 and UGT92G6, by structure-guided in silico mutagenesis to facilitate the interactions of active site residues with flavonol glucosides and thus modify substrate specificity and activity. Site-directed mutagenesis at selected sites, followed with liquid chromatography–mass spectrometry based activity assays, exhibited that mutant UGTs were altered in product selectivity and activity as compared to the wild-type enzymes. Mutant UGTs produced larger amounts of flavonol di-monosaccharide glucosides, which imply that the mutations led to structural changes that increased the volume of the binding pocket to accommodate a larger substrate and to release larger products at ease. Mutants showed increased activity and modified product specificity. Thus, structure-based systematic mutations of the amino acid residues in the binding pocket can be explored for the generation of engineered UGTs for diverse biotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document