Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers - Origin, Recognition, Initiation, and Reservoir Quality

2013 ◽  
2021 ◽  
Author(s):  
Anton Khitrenko ◽  
Adelia Minkhatova ◽  
Vladimir Orlov ◽  
Dmitriy Kotunov ◽  
Salavat Khalilov

Abstract Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir. Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas. In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.


2021 ◽  
Author(s):  
Fadzlin Hasani Kasim ◽  
Budi Priyatna Kantaatmadja ◽  
Wan Nur Wan M Zainudin ◽  
Amita Ali ◽  
Hasnol Hady Ismail ◽  
...  

Abstract Predicting the spatial distribution of rock properties is the key to a successful reservoir evaluation for hydrocarbon potential. However, a reservoir with a complex environmental setting (e.g. shallow marine) becomes more challenging to be characterized due to variations of clay, grain size, compaction, cementation, and other diagenetic effects. The assumption of increasing permeability value with an increase of porosity may not be always the case in such an environment. This study aims to investigate factors controlling the porosity and permeability relationships at Lower J Reservoir of J20, J25, and J30, Malay Basin. Porosity permeability values from routine core analysis were plotted accordingly in four different sets which are: lithofacies based, stratigraphic members based, quartz volume-based, and grain-sized based, to investigate the trend in relating porosity and permeability distribution. Based on petrographical studies, the effect of grain sorting, mineral type, and diagenetic event on reservoir properties was investigated and characterized. The clay type and its morphology were analyzed using X-ray Diffractometer (XRD) and Spectral electron microscopy. Results from porosity and permeability cross-plot show that lithofacies type play a significant control on reservoir quality. It shows that most of the S1 and S2 located at top of the plot while lower grade lithofacies of S41, S42, and S43 distributed at the middle and lower zone of the plot. However, there are certain points of best and lower quality lithofacies not located in the theoretical area. The detailed analysis of petrographic studies shows that the diagenetic effect of cementation and clay coating destroys porosity while mineral dissolution improved porosity. A porosity permeability plot based on stratigraphic members showed that J20 points located at the top indicating less compaction effect to reservoir properties. J25 and J30 points were observed randomly distributed located at the middle and bottom zone suggesting that compaction has less effect on both J25 and J30 sands. Lithofacies description that was done by visual analysis through cores only may not correlate-able with rock properties. This is possibly due to the diagenetic effect which controls porosity and permeability cannot visually be seen at the core. By incorporating petrographical analysis results, the relationship between porosity, permeability, and lithofacies can be further improved for better reservoir characterization. The study might change the conventional concept that lower quality lithofacies does not have economic hydrocarbon potential and unlock more hydrocarbon-bearing reserves especially in these types of environmental settings.


2021 ◽  
Vol 11 (4) ◽  
pp. 1643-1666
Author(s):  
Ahmed M. Elatrash ◽  
Mohammad A. Abdelwahhab ◽  
Hamdalla A. Wanas ◽  
Samir I. El-Naggar ◽  
Hasan M. Elshayeb

AbstractThe quality of a hydrocarbon reservoir is strongly controlled by the depositional and diagenetic facies nature of the given rock. Therefore, building a precise geological/depositional model of the reservoir rock is critical to reducing risks while exploring for petroleum. Ultimate reservoir characterization for constructing an adequate geological model is still challenging due to the in general insufficiency of data; particularly integrating them through combined approaches. In this paper, we integrated seismic geomorphology, sequence stratigraphy, and sedimentology, to efficiently characterize the Upper Miocene, incised-valley fill, Abu Madi Formation at South Mansoura Area (Onshore Nile Delta, Egypt). Abu Madi Formation, in the study area, is a SW-NE trending reservoir fairway consisting of alternative sequences of shales and channel-fill sandstones, of the Messinian age, that were built as a result of the River Nile sediment supply upon the Messinian Salinity Crisis. Hence, it comprises a range of continental to coastal depositional facies. We utilized dataset including seismic data, complete set of well logs, and core samples. We performed seismic attribute analysis, particularly spectral decomposition, over stratal slices to outline the geometry of the incised-valley fill. Moreover, well log analysis was done to distinguish different facies and lithofacies associations, and define their paleo-depositional environments; a preceding further look was given to the well log-based sequence stratigraphic setting as well. Furthermore, mineralogical composition and post-depositional diagenesis were identified performing petrographical analysis of some thin sections adopted from the core samples. A linkage between such approaches, performed in this study, and their impact on reservoir quality determination was aimed to shed light on a successful integrated reservoir characterization, capable of giving a robust insight into the depositional facies, and the associated petroleum potential. The results show that MSC Abu Madi Formation constitutes a third-order depositional sequence of fluvial to estuarine units, infilling the Eonile-canyon, with five sedimentary facies associations; overbank mud, fluvial channel complex, estuarine mud, tidal channels, and tidal bars; trending SW-NE with a Y-shape channel geometry. The fluvial facies association (zone 1 and 3) enriches coarse-grained sandstones, deposited in subaerial setting, with significantly higher reservoir quality, acting as the best reservoir facies of the area. Although the dissolution of detrital components, mainly feldspars, enhanced a secondary porosity, improving reservoir quality of MSC Abu Madi sediments, continental fluvial channel facies represent the main fluid flow conduits, where marine influence is limited.


2020 ◽  
Vol 10 (8) ◽  
pp. 3157-3177 ◽  
Author(s):  
Sameer Noori Ali Al-Jawad ◽  
Muhammad Abd Ahmed ◽  
Afrah Hassan Saleh

Abstract The reservoir characterization and rock typing is a significant tool in performance and prediction of the reservoirs and understanding reservoir architecture, the present work is reservoir characterization and quality Analysis of Carbonate Rock-Types, Yamama carbonate reservoir within southern Iraq has been chosen. Yamama Formation has been affected by different digenesis processes, which impacted on the reservoir quality, where high positively affected were: dissolution and fractures have been improving porosity and permeability, and destructive affected were cementation and compaction, destroyed the porosity and permeability. Depositional reservoir rock types characterization has been identified depended on thin section analysis, where six main types of microfacies have been recognized were: packstone-grainstone, packstone, wackestone-packstone, wackestone, mudstone-wackestone, and mudstone. By using flow zone indicator, four groups have been defined within Yamama Formation, where the first type (FZI-1) represents the bad quality of the reservoir, the second type (FZI-2) is characterized by the intermediate quality of the reservoir, third type (FZI-3) is characterized by good reservoir quality, and the fourth type (FZI-4) is characterized by good reservoir quality. Six different rock types were identified by using cluster analysis technique, Rock type-1 represents the very good type and characterized by low water Saturation and high porosity, Rock type-2 represents the good rock type and characterized by low water saturation and medium–high porosity, Rock type-3 represents intermediate to good rock type and characterized by low-medium water saturation and medium porosity, Rock type-4 represents the intermediate rock type and characterized by medium water saturation and low–medium porosity, Rock type-5 represents intermediate to bad rock type and characterized by medium–high water saturation and medium–low porosity, and Rock type-6 represents bad rock type and characterized by high water saturation and low porosity. By using Lucia Rock class typing method, three types of rock type classes have been recognized, the first group is Grain-dominated Fabrics—grainstone, which represents a very good rock quality corresponds with (FZI-4) and classified as packstone-grainstone, the second group is Grain-dominated Fabrics—packstone, which corresponds with (FZI-3) and classified as packstone microfacies, the third group is Mud-dominated Fabrics—packstone, packstone, correspond with (FZI-1 and FZI-2) and classified as wackestone, mudstone-wackestone, and mudstone microfacies.


Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 426
Author(s):  
Kristina Novak Zelenika ◽  
Karolina Novak Mavar ◽  
Stipica Brnada

The sweetness seismic attribute is a very useful tool for proper description of the depositional environment, reservoir quality and lithofacies discrimination. This paper shows that depositional channels and turbidity sandstones deposited during the Upper Pannonian and Lower Pontian in the Sava Depression can be described using porosity–thickness and sweetness seismic attribute maps. Two studied reservoirs are of Neogene stage (“UP” reservoir of Upper Pannonian age and “LP” reservoir of Lower Pontian age) and located in the Sava Depression, Croatia. Both reservoirs contain medium to fine grained sandstones that are intercalated with basinal marls. A comparison of the sweetness seismic attribute and porosity–thickness maps show a good visual match with correlation coefficient of approximately 0.85. A mismatch was observed in areas with small reservoir thickness. This work demonstrates the importance of using porosity–thickness maps for reservoir characterization. The workflow presented in this work has wider applications in frontier areas with poor seismic data or coverage.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6154
Author(s):  
Daniela Becerra ◽  
Christopher R. Clarkson ◽  
Amin Ghanizadeh ◽  
Rafael Pires de Lima ◽  
Farshad Tabasinejad ◽  
...  

Completion design for horizontal wells is typically performed using a geometric approach where the fracturing stages are evenly distributed along the lateral length of the well. However, this approach ignores the intrinsic vertical and horizontal heterogeneity of unconventional reservoirs, resulting in uneven production from hydraulic fracturing stages. An alternative approach is to selectively complete intervals with similar and superior reservoir quality (RQ) and completion quality (CQ), potentially leading to improved development efficiency. In the current study, along-well reservoir characterization is performed using data from a horizontal well completed in the Montney Formation in western Canada. Log-derived petrophysical and geomechanical properties, and laboratory analyses performed on drill cuttings, are integrated for the purpose of evaluating RQ and CQ variability along the well. For RQ, cutoffs were applied to the porosity (>4%), permeability (>0.0018 mD), and water saturation (<20%), whereas, for CQ, cutoffs were applied to rock strength (<160 Mpa), Young’s Modulus (60–65 GPa), and Poisson’s ratio (<0.26). Based on the observed heterogeneity in reservoir properties, the lateral length of the well can be subdivided into nine segments. Superior RQ and CQ intervals were found to be associated with predominantly (massive) porous siltstone facies; these intervals are regarded as the primary targets for stimulation. In contrast, relatively inferior RQ and CQ intervals were found to be associated with either dolomite-cemented facies or laminated siltstones. The methods developed and used in this study could be beneficial to Montney operators who aim to better predict and target sweet spots along horizontal wells; the approach could also be used in other unconventional plays.


Author(s):  
Abdel Moktader A. El-Sayed ◽  
Nahla A. El Sayed ◽  
Hadeer A. Ali ◽  
Mohamed A. Kassab ◽  
Salah M. Abdel-Wahab ◽  
...  

AbstractThe present work describes and evaluates the reservoir quality of the sandstone of the Nubia Formation at the Gebel Abu Hasswa outcrop in southwest Sinai, Egypt. Hydraulic flow unit (HFU) and electrical flow unit (EFU) concepts are implied to achieve this purpose. The Paleozoic section made up of four formations has been studied. The oldest is Araba Formation followed by Naqus formations (Nubia C and D) overlay by Abu Durba, Ahemir and Qiseib formations (Nubia B), where the Lower Cretaceous (Nubia A) is represented by the Malha Formation. The studied samples have been collected from Araba, Abu Durba, Ahemir and the Malha formations. The hydraulic flow unit (HFU) discrimination was carried out based on permeability and porosity relationship, whereas the electrical flow unit (EFU) differentiation was carried out based on the relationship between formation resistivity factor and porosity. Petrographic investigation of the studied thin sections illustrates that the studied samples are mainly quartz arenite. Important roles to enhance or reduce the pore size and/or pore throats controlling the reservoir petrophysical behavior are due to the diagenetic processes. The present study used the reservoir quality index (RQI) and Winland R35 as additional parameters applied to discriminate the HFUs. The study samples have five hydraulic flow units of different rock types, where the detected electrical flow units are only three. The differences between them are may be due to the cementation process with iron oxides that might act as pore filling, lining and pore bridging, sometimes bridges helping to decrease permeability without serious reduction in porosity. The reduction between the number of EFUs and HFUs comes from the effect of diagenesis processes which is responsible for a precipitation of different cement types such as different clay minerals and iron oxides.


Sign in / Sign up

Export Citation Format

Share Document