Differences in myofilament calcium sensitivity in rat psoas fibers reconstituted with troponin T isoforms containing the α- and β-exons

2006 ◽  
Vol 456 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Clare E. Gallon ◽  
Matthew L. Tschirgi ◽  
Murali Chandra
2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Maike Schuldt ◽  
Larissa Dorsch ◽  
Diederik Kuster ◽  
Jolanda Van der Velden

Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ∼50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, SMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, SMN). Gene mutations are most often present in genes encoding the sarcomere proteins myosin heavy chain, myosin-binding protein C, and troponin T. Studies in cardiac tissue samples from patients with obstructive HCM that were obtained during myectomy surgery showed increased myofilament calcium sensitivity, increased kinetics and tension cost, and a reduction of the super-relaxed state of myosin, which is associated with an energy-conserving status of the crossbridges. The increase in myofilament calcium sensitivity is observed at a low dose of mutant protein, while the magnitude of the increase in calcium sensitivity depends on the specific mutation location. These mutation-mediated myofilament changes may underlie inefficient in vivo cardiac performance in mutation carriers. Reduced cardiac efficiency has been observed before onset of cardiac hypertrophy and at advanced disease stages. In addition, impaired diastolic function is an early disease characteristic of HCM. Our recent proteomics studies revealed increased detyrosination of microtubules, which may be a cause of diastolic dysfunction. Recent treatments that target inefficient cardiac performance, such as myosin inhibitors and metabolic drug therapies, may have the potential to prevent, delay, or even reverse disease in HCM-mutation carriers. Treatment response may depend on the specific gene mutation in SMP individuals and may explain diverse response of HCM patients to therapy. While mutation-mediated cardiomyocyte defects have become clear in past years, more research is warranted to define the cellular pathomechanisms of cardiac dysfunction in SMN patients.


2007 ◽  
Vol 42 (6) ◽  
pp. S46
Author(s):  
Judit Barta ◽  
Jolanda van der Velden ◽  
Nicky M. Boontje ◽  
Ruud Zaremba ◽  
Ger J.M. Stienen

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Nathan Palpant ◽  
Sharlene Day ◽  
Kimber Converso ◽  
Joseph Metzger

Contractile dysfunction associated with ischemia is a significant cause of morbidity and mortality particularly in the elderly. Strategies designed to protect the aged heart from ischemia-mediated pump failure are needed. We have generated transgenic (Tg) mice expressing a modified form of adult cardiac troponin I, the Ca ++ -activated molecular switch of the myofilament. Consonant with the fetal isoform, this transgene encodes a histidine substitution (A164H) in the critical switch domain of TnI thus increasing myofilament calcium sensitivity in a pH-dependent manner. We hypothesized that aged mice (24 months), intrinsically susceptible to myocardial dysfunction, would retain improved cardiac contractility at baseline and during an acute hypoxic challenge by means of myofilament-mediated calcium sensitization. Methods/Results: At baseline, by echocardiography, Tg hearts had increased systolic function, with a 26% higher mean ejection fraction compared to nontransgenic (Ntg) mice: 75 ± 3% [Tg: n = 13] vs. 63 ± 4% [Ntg: n = 12], P < 0.05, with no differences in diastolic function between the groups. To study the effects of acute hypoxia on cardiac hemodynamics mice underwent microconductance Millar catheterization while ventilated with 12% oxygen. Aged Tg mice had improved survival compared to Ntg mice: time to pump failure (65% of baseline peak systolic pressure) 11.59 ± 1.25 min. [Tg: n = 3] vs. 4.11 ± 1.90 min. [Ntg: n = 3], P < 0.05. After four minutes of hypoxia, Tg mice had markedly improved cardiac contractility compared to Ntg mice with increased stroke volume (30.05 ± 4.49 uL [Tg] vs. 13.23 ± 3.21 uL [Ntg], P < 0.05), end systolic pressure (106.09 ± 11.81 mmHg [Tg] vs. 64.49 ± 4.05 mmHg [Ntg], P < 0.05) and rate of positive left ventricular pressure development (12958.66 ± 2544.68 mmHg/sec [Tg] vs. 5717.00 ± 745.67 mmHg/sec [Ntg], P = 0.05). Conclusion: An alteration in myofilament calcium sensitivity via a pH-responsive histidine button in cardiac troponin I augments baseline heart function in Tg mice over their lifetime. During acute hypoxia, cTnI A164H improves survival in aged mice by maintaining cardiac contractility, and thus holds promise for the design of gene therapeutics to treat pump failure associated with acute ischemic events in the elderly.


2001 ◽  
Vol 281 (2) ◽  
pp. H969-H974 ◽  
Author(s):  
Chee Chew Lim ◽  
Michiel H. B. Helmes ◽  
Douglas B. Sawyer ◽  
Mohit Jain ◽  
Ronglih Liao

Isolated permeabilized cardiac myocytes have been used in the study of myofilament calcium sensitivity through measurement of the isometric force-pCa curve. Determining this force-pCa relationship in skinned myocytes is relatively expensive and carries a high degree of variability. We therefore attempted to establish an alternative high-throughput method to measure calcium sensitivity in cardiac myocytes. With the use of commercially available software that allows for precise measurement of sarcomere spacing, we measured sarcomere length changes in unloaded skinned cardiac myocytes over a range of calcium concentrations. With the use of this technique, we were able to accurately detect acute increases or decreases in myofilament calcium sensitivity after exposure to 10 mM caffeine or 5 mM 2,3-butanedione monoxime, respectively. This technique allows for the simple and rapid determination of myofilament calcium sensitivity in cardiac myocytes in a reproducible and inexpensive manner and could be used for high-throughput screening of pharmacological agents and/or transgenic mouse models for changes in myofilament calcium sensitivity.


2007 ◽  
Vol 293 (1) ◽  
pp. H548-H556 ◽  
Author(s):  
Renan J. Sandoval ◽  
Elisha R. Injeti ◽  
James M. Williams ◽  
William T. Georthoffer ◽  
William J. Pearce

Regulation of cytosolic calcium and myofilament calcium sensitivity varies considerably with postnatal age in cerebral arteries. Because these mechanisms also govern myogenic tone, the present study used graded stretch to examine the hypothesis that myogenic tone is less dependent on calcium influx and more dependent on myofilament calcium sensitization in term fetal compared with adult cerebral arteries. Term fetal and adult posterior communicating cerebral arteries exhibited similar myogenic responses, with peak tensions averaging 24 and 26% of maximum contractile force produced in any given tissue in response to an isotonic Krebs buffer containing 122 mM K+ (Kmax) at optimum stretch ratios (working diameter/unstressed diameter) of 2.19 and 2.23, respectively. Graded stretch increased cytosolic Ca2+ concentration at stretch ratios >2.0 in adult arteries, but increased Ca2+ concentration only at stretch ratios >2.3 in fetal arteries. In permeabilized arteries, myogenic tone peaked at a stretch ratio of 2.1 in both fetal and adult arteries. The fetal %Kmax values at peak myogenic tone were not significantly different at either pCa 7.0 (23%) or pCa 5.5 (25%) but were significantly less at pCa 8.0 (8.4 ± 2.3%). Conversely, adult %Kmax values at peak myogenic tone were significantly less at both pCa 8.0 (10.4 ± 1.8%) and pCa 7.0 (16%) than at pCa 5.5 (27%). The maximal extents of stretch-induced increases in myosin light chain phosphorylation in intact fetal (20%) and adult (17%) arteries were similar. The data demonstrate that the cerebrovascular myogenic response is highly conserved during postnatal maturation but is mediated differently in fetal and adult cerebral arteries.


1993 ◽  
Vol 74 (3) ◽  
pp. 1156-1160 ◽  
Author(s):  
M. Campione ◽  
S. Ausoni ◽  
C. Y. Guezennec ◽  
S. Schiaffino

We examined the myosin heavy-chain (MHC), troponin T (TnT), and troponin I (TnI) isoform composition in the rat soleus muscle after 21 days of hindlimb suspension using electrophoretic and immunoblotting analysis with specific monoclonal antibodies. The suspended soleus showed a shift in the MHC isoform distribution with a marked increase (from 1.0 to 33%) in the relative amount of type IIa and IIx MHC and a corresponding decrease in type I MHC. However, type IIb MHC, which represents a major component in fast-twitch muscles, was not detected in suspended soleus muscles. TnT and TnI isoform composition was also changed with the appearance of fast-type TnI and TnT bands. However, a high-mobility TnT band, which represents a major component in fast-twitch muscles, was not expressed in suspended soleus. These isoform transitions may be related to the increased maximal velocity of shortening and higher calcium sensitivity previously reported in the rat soleus after hindlimb suspension.


2010 ◽  
Vol 31 (3) ◽  
pp. 227-239 ◽  
Author(s):  
Ganapathy Jagatheesan ◽  
Sudarsan Rajan ◽  
Rafeeq P. H. Ahmed ◽  
Natalia Petrashevskaya ◽  
Greg Boivin ◽  
...  

Surgery ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Koh Takeuchi ◽  
Pedro J. del Nido ◽  
Andra E. Ibrahim ◽  
Dimitrios N. Poutias ◽  
Paul Glynn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document