mechanical unloading
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 60)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 136
Author(s):  
Justin Braveboy-Wagner ◽  
Yoav Sharoni ◽  
Peter I. Lelkes

Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Cori N. Booker ◽  
Christopher L. Haga ◽  
Siddaraju V. Boregowda ◽  
Jacqueline Strivelli ◽  
Donald G. Phinney

AbstractDisuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin−LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.


Haematologica ◽  
2021 ◽  
Author(s):  
Kotaro Tanimoto ◽  
Masahiro Hiasa ◽  
Hirofumi Tenshin ◽  
Jumpei Teramachi ◽  
Asuka Oda ◽  
...  

Not available.


Author(s):  
Allison W. Hsia ◽  
Elias H. Jbeily ◽  
Melanie E. Mendez ◽  
Hailey C. Cunningham ◽  
Kristin K. Biris ◽  
...  

2021 ◽  
Author(s):  
Bingzi Dong ◽  
Masahiro Hiasa ◽  
Itsuro Endo ◽  
Yukiyo Ohnishi ◽  
Takeshi Kondo ◽  
...  

Abstract Exercise offers mechanical loading to the bone, while it stimulates energy expenditure in the adipose tissue. Thus, bone may secrete a factor to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is expressed in the bone, upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Systemic IL-11 deletion (IL-11−/−) exhibited reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. Enhancement of bone resorption under mechanical unloading was unaffected. Unexpectedly, IL-11−/− mice showed increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice showed reduced serum IL-11, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11−/− mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre; IL-11fl/fl mice exhibited no abnormality. Thus, IL-11 from osteoblast/osteocyte controls both osteogenesis and systemic adiposity in response to mechanical loading. These findings may bring new therapeutic approaches to osteoporosis and metabolic syndrome.


2021 ◽  
Vol 22 (19) ◽  
pp. 10527
Author(s):  
Liqun Xu ◽  
Lijun Zhang ◽  
Xiaoyan Zhang ◽  
Gaozhi Li ◽  
Yixuan Wang ◽  
...  

Mechanical unloading contributes to significant cardiovascular deconditioning. Endothelial dysfunction in the sites of microcirculation may be one of the causes of the cardiovascular degeneration induced by unloading, but the detailed mechanism is still unclear. Here, we first demonstrated that mechanical unloading inhibited brain microvascular endothelial cell proliferation and downregulated histone deacetylase 6 (HDAC6) expression. Furthermore, HDAC6 promoted microvascular endothelial cell proliferation and attenuated the inhibition of proliferation caused by clinorotation unloading. To comprehensively identify microRNAs (miRNAs) that are regulated by HDAC6, we analyzed differential miRNA expression in microvascular endothelial cells after transfection with HDAC6 siRNA and selected miR-155-5p, which was the miRNA with the most significantly increased expression. The ectopic expression of miR-155-5p inhibited microvascular endothelial cell proliferation and directly downregulated Ras homolog enriched in brain (RHEB) expression. Moreover, RHEB expression was downregulated under mechanical unloading and was essential for the miR-155-5p-mediated promotion of microvascular endothelial cell proliferation. Taken together, these results are the first to elucidate the role of HDAC6 in unloading-induced cell growth inhibition through the miR-155-5p/RHEB axis, suggesting that the HDAC6/miR-155-5p/RHEB pathway is a specific target for the preventative treatment of cardiovascular deconditioning.


2021 ◽  
Vol 97 ◽  
pp. 107613
Author(s):  
Youlong Zhou ◽  
Xing Chen ◽  
Zemin Zhu ◽  
Daochi Bi ◽  
Shuyun Ma
Keyword(s):  

Author(s):  
Yi Ding ◽  
Yu Cui ◽  
Xi Yang ◽  
Xiaolu Wang ◽  
Guangzhao Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document