α-synuclein-assisted oligomerization of β-amyloid (1–42)

Author(s):  
Edward Chau ◽  
Jin Kim
Keyword(s):  
2005 ◽  
Vol 38 (05) ◽  
Author(s):  
JM Maler ◽  
P Spitzer ◽  
M Herrmann ◽  
H Esselmann ◽  
P Lewczuk ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Liang Sun ◽  
Anuj K. Sharma ◽  
Byung-Hee Han ◽  
Liviu M. Mirica

<p>Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet the cause and progression of this disorder are not completely understood. While the main hallmark of AD is the deposition of amyloid plaques consisting of the β-amyloid (Aβ) peptide, transition metal ions are also known to play a significant role in disease pathology by expediting the formation of neurotoxic soluble β-amyloid (Aβ) oligomers, reactive oxygen species (ROS), and oxidative stress. Thus, bifunctional metal chelators that can control these deleterious properties are highly desirable. Herein, we show that amentoflavone (AMF) – a natural biflavonoid compound, exhibits good metal-chelating properties, especially for chelating Cu<sup>2+</sup> with very high affinity (pCu<sub>7.4</sub> = 10.44). In addition, AMF binds to Aβ fibrils with a high affinity (<i>K<sub>i</sub></i> = 287 ± 20 nM) – as revealed by a competition thioflavin T (ThT) assay, and specifically labels the amyloid plaques <i>ex vivo</i> in the brain sections of transgenic AD mice – as confirmed via immunostaining with an Ab antibody. The effect of AMF on Aβ<sub>42</sub> aggregation and disaggregation of Aβ<sub>42</sub> fibrils was also investigated, to reveal that AMF can control the formation of neurotoxic soluble Aβ<sub>42</sub> oligomers, both in absence and presence of metal ions, and as confirmed via cell toxicity studies. Furthermore, an ascorbate consumption assay shows that AMF exhibits potent antioxidant properties and can chelate Cu<sup>2+</sup> and significantly diminish the Cu<sup>2+</sup>-ascorbate redox cycling and reactive oxygen species (ROS) formation. Overall, these studies strongly suggest that AMF acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity, can also bind Cu<sup>2+</sup> and mediate its deleterious redox properties, and thus AMF has the potential to be a lead compound for further therapeutic agent development for AD. </p>


2019 ◽  
Vol 484 (1) ◽  
pp. 104-108
Author(s):  
G. F. Makhaeva ◽  
E. F. Shevtsova ◽  
N. P. Boltneva ◽  
N. V. Kovaleva ◽  
E. V. Rudakova ◽  
...  

This study presents the synthesis of binary tetrohydro-γ-carbolines with ditriazol spacers of varying length, which exhibit anticholinesterase and antioxidant activity, as compared to the original Dimebon prototype. Anticholinesterase activity suggests the potential ability of the new compounds to block β-amyloid aggregation induced by anticholinesterase, making them promising candidates for further research preparations for the treatment of Alzheimer's disease. Particular attention should be paid to the conjugate with an intertriazol hexamethylene spacer, which can be regarded as the leading compound in this series.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-7
Author(s):  
G. P. Eckert ◽  
W. G. Wood ◽  
W. E. Muller
Keyword(s):  

2017 ◽  
Vol 14 (11) ◽  
Author(s):  
Ping Wang ◽  
Keliang Chen ◽  
Yuehua Gu ◽  
Qihao Guo ◽  
Zhen Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document