scholarly journals The impact of regulatory and financial discrimination on China's low-carbon development: Considering firm heterogeneity

2020 ◽  
Vol 11 (2) ◽  
pp. 72-84
Author(s):  
Wei-Qi Tang ◽  
Bo Meng ◽  
Li-Bo Wu
PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245891
Author(s):  
Shujing Zhang ◽  
Beibei Hu ◽  
Xiufeng Zhang

In recent times, China has emphasized five major development concepts to promote high-quality development: coordination, green, innovation, openness, and sharing. As a metamorphosis of these ideas, Chinese science and technology parks (STPs) are gathering areas of high-tech industries and represent advanced productive forces. Their greenness, openness, and innovative developments herald the future development trends of China. Based on the data of 52 STPs in China from 2011 to 2018, this study analyzes the impact of foreign direct investment (FDI) quantity and quality on the low-carbon development of the STPs. We use Hansen’s nonlinear panel threshold regression model with knowledge accumulation as the threshold variable. The results show the following: First, there are complex nonlinear relationships between FDI quantity, FDI quality, and the low-carbon development of the STPs. Second, FDI quantity has a significant positive impact on the low-carbon development of the STPs only when the level of knowledge accumulation is below a certain threshold. Beyond this threshold the effect is no longer significant. Third, FDI quality has a significant positive impact on the low-carbon development of STPs only when the level of knowledge accumulation is lower than a certain threshold; beyond which, the impact is no longer significant. These results can serve as a reference for China to effectively promote economic low-carbon growth of STPs and achieve green, open, and innovative development.


2019 ◽  
Vol 11 (8) ◽  
pp. 2288 ◽  
Author(s):  
Huang ◽  
Liang ◽  
Liang ◽  
Tong

The government of China has introduced a series of energy-saving and emission reduction policies and energy industry development plans to promote the low-carbon development of the power sector. Under relatively clear and specific low-carbon development goals, the ongoing power transition has recently been studied intensively in the frame of global sustainable transition. With the development of renewable technologies, besides the long-term development goals, learning and diffusion of innovative technologies and the incentive effect of supportive policies are also important driving forces of the transition. The levelized power generation cost is the power generation cost when the net present value of the power project is zero. In this paper, the levelized power generation cost model with a learning curve and policy scenario is used to reflect the impact of technology diffusion and incentive policies from the economy perspective. By treating it as a state transfer function, a dynamic power generation–transmission integrated planning model based on the Markov Decision Process is established to describe the long-term power transition pathway under the impact of power technology diffusion and incentive policies. Through the calculation of power demand forecasting data up to 2050 and other power system information, the dynamic planning result shows that the current low-carbon policies cannot obviously reduce the expansion of coal power, but if strict low-carbon policies are implemented, the renewable power will gradually become dominant in the power structure before 2030.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yinna Xu ◽  
Guohao Zhao ◽  
Baojian Zhang ◽  
Jiao Jiao

The green low-carbon development system of enterprises, differing from the traditional linear system, is a nonlinear feedback system with complex causality. Based on self-organization theory, this study clarified the self-organization evolution logic of the green low-carbon development of coal enterprises and constructed a system dynamics model following a system dynamics method. Through a scenario simulation analysis, the impact of the market environment, environmental regulation, and enterprises’ innovation level on the green low-carbon development of coal enterprises was revealed. Applicability suggestions based on simulation results were proposed. The results confirmed that the main challenge for coal enterprises is that the coal market environment restricts the promotion of green low-carbon development level of coal enterprises. Improving innovation levels is the most effective way for coal enterprises to address these issues.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Hadi Torkamani ◽  
Shahram Raygan ◽  
Carlos Garcia Mateo ◽  
Yahya Palizdar ◽  
Jafar Rassizadehghani ◽  
...  

AbstractIn this study, dual-phase (DP, ferrite + martensite) microstructures were obtained by performing intercritical heat treatments (IHT) at 750 and 800 °C followed by quenching. Decreasing the IHT temperature from 800 to 750 °C leads to: (i) a decrease in the volume fraction of austenite (martensite after quenching) from 0.68 to 0.36; (ii) ~ 100 °C decrease in martensite start temperature (Ms), mainly due to the higher carbon content of austenite and its smaller grains at 750 °C; (iii) a reduction in the block size of martensite from 1.9 to 1.2 μm as measured by EBSD. Having a higher carbon content and a finer block size, the localized microhardness of martensite islands increases from 380 HV (800 °C) to 504 HV (750 °C). Moreover, despite the different volume fractions of martensite obtained in DP microstructures, the hardness of the steels remained unchanged by changing the IHT temperature (~ 234 to 238 HV). Applying lower IHT temperature (lower fraction of martensite), the impact energy even decreased from 12 to 9 J due to the brittleness of the martensite phase. The results of the tensile tests indicate that by increasing the IHT temperature, the yield and ultimate tensile strengths of the DP steel increase from 493 to 770 MPa, and from 908 to 1080 MPa, respectively, while the total elongation decreases from 9.8 to 4.5%. In contrast to the normalized sample, formation of martensite in the DP steels could eliminate the yield point phenomenon in the tensile curves, as it generates free dislocations in adjacent ferrite.


Author(s):  
Jintao Ma ◽  
Qiuguang Hu ◽  
Weiteng Shen ◽  
Xinyi Wei

To cope with climate change and achieve sustainable development, low-carbon city pilot policies have been implemented. An objective assessment of the performance of these policies facilitates not only the implementation of relevant work in pilot areas, but also the further promotion of these policies. This study uses A-share listed enterprises from 2005 to 2019 and creates a multi-period difference-in-differences model to explore the impact of low-carbon city pilot policies on corporate green technology innovation from multiple dimensions. Results show that (1) low-carbon city pilot policies stimulates the green technological innovation of enterprises as manifested in their application of green invention patents; (2) the introduction of pilot policies is highly conducive to green technological innovation in eastern cities and enterprises in high-carbon emission industries; and (3) tax incentives and government subsidies are important fiscal and taxation tools that play the role of pilot policies in low-carbon cities. By alleviating corporate financing constraints, these policies effectively promote the green technological innovation of enterprises. This study expands the research on the performance of low-carbon city pilot policies and provides data support for a follow-up implementation and promotion of policies from the micro perspective at the enterprise level.


Sign in / Sign up

Export Citation Format

Share Document