Large-scale shielding structures in low earth orbits

2015 ◽  
Vol 109 ◽  
pp. 153-161 ◽  
Author(s):  
D.V. Panov ◽  
M.V. Silnikov ◽  
A.I. Mikhaylin ◽  
I.S. Rubzov ◽  
V.B. Nosikov ◽  
...  
2021 ◽  
Author(s):  
Vidvuds Beldavs

<p>In this paper I will present scenarios of lunar industrial development to 2050 and corresponding development of markets for lunar resources in Earth orbits, cislunar space, the lunar surface, as well as the likely emergence of industrial development in Mars orbits based on use of lunar resources. I will also examine actions needed in the 2021-2030 timeframe to make this possible.</p> <p>Given that targets for launch to LEO from Earth in the range of $100 to $200/ kg. can be achieved before 2040 the Moon can emerge as the low-cost source of materials for industrial and commercial development in the Earth-Moon system and beyond.  Key assumptions that I will examined include the following:</p> <ul> <li>Structures in Earth orbits and cislunar space will be assembled in orbit from components manufactured in space.</li> <li>Space tourism with large-scale space resorts in low Earth orbits will give way to space settlements housing thousands and more as mortgage financing is developed to finance their development.</li> <li>The Moon will emerge as the low-cost site for materials for space manufacturing. Many important materials are on or near the surface and there is high probability of concentrations of high value materials being discovered in accessible locations including potentially the Aitken Basin anomaly [1}. , and the vacuum and fractional gravity of the Moon promises launch costs from the Moon to Earth orbits that are a fraction of launch from Earth.</li> <li>Lunar materials are likely to emerge as a primary source for industrial and commercial developments in Mars orbits. The delta-v of shipment to Mars orbit from the lunar surface is less than launch from Mars [1]. Industrial development in Mars orbit using lunar materials can lower costs and improve effectiveness of operations on Mars.</li> <li>It will become increasingly urgent to limit launch of spacecraft to LEO from Earth as congestion from satellite mega constellations increases and suborbital intercontinental transportation takes off following the model proposed by Elon Musk.</li> <li>Climate change is a threat to all countries and urgent action is called for to limit or eliminate large scale resource extraction on Earth, as well as to limit launches through the atmosphere. This factor will speed lunar industrial development and potentially open opportunities for some lunar derived materials to compete in terrestrial markets.</li> <li>A rules-based order agreed to by all states involved in outer space development will emerge by 2030. Billionaires can speed up development but international cooperation and agreement on governance policies is necessary to assure self-sustaining lunar industrial development.</li> </ul> <p>Notes</p> <p>[1] An excellent overview of lunar materials that also includes discussion of processing options is Ian A. Crawford, “Lunar resources: A review”, Progress in Physical Geography, 2015, Vol. 39(2) 137–167, retrieved from http://www.homepages.ucl.ac.uk/~ucfbiac/Lunar_resources_review_published.pdf . Pg. 149 summarizes findings on the Aitken Basin anomaly suggesting that a large metallic asteroid approximately 110 meters across may be buried there. The Psyche 16 metallic asteroid that has drawn media attention is 200 meters - 16 Psyche - Wikipedia</p> <p>[2]https://space.stackexchange.com/questions/2046/delta-v-chart-mathematics</p> <p> </p>


2009 ◽  
Vol 15 (1) ◽  
pp. 13-18 ◽  
Author(s):  
A.I. Maslova ◽  
◽  
A.V. Pirozhenko ◽  

2017 ◽  
Vol 473 (2) ◽  
pp. 2407-2414 ◽  
Author(s):  
Elisa Maria Alessi ◽  
Giulia Schettino ◽  
Alessandro Rossi ◽  
Giovanni B. Valsecchi

Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 31 ◽  
Author(s):  
Dario Modenini ◽  
Anton Bahu ◽  
Giacomo Curzi ◽  
Andrea Togni

To enable a reliable verification of attitude determination and control systems for nanosatellites, the environment of low Earth orbits with almost disturbance-free rotational dynamics must be simulated. This work describes the design solutions adopted for developing a dynamic nanosatellite attitude simulator testbed at the University of Bologna. The facility integrates several subsystems, including: (i) an air-bearing three degree of freedom platform, with automatic balancing system, (ii) a Helmholtz cage for geomagnetic field simulation, (iii) a Sun simulator, and (iv) a metrology vision system for ground-truth attitude generation. Apart from the commercial off-the-shelf Helmholtz cage, the other subsystems required substantial development efforts. The main purpose of this manuscript is to offer some cost-effective solutions for their in-house development, and to show through experimental verification that adequate performances can be achieved. The proposed approach may thus be preferred to the procurement of turn-key solutions, when required by budget constraints. The main outcome of the commissioning phase of the facility are: a residual disturbance torque affecting the air bearing platform of less than 5 × 10−5 Nm, an attitude determination rms accuracy of the vision system of 10 arcmin, and divergence of the Sun simulator light beam of less than 0.5° in a 35 cm diameter area.


Author(s):  
Giulia Schettino ◽  
Elisa Maria Alessi ◽  
Alessandro Rossi ◽  
Giovanni B. Valsecchi

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
J. C. Sampaio ◽  
E. Wnuk ◽  
R. Vilhena de Moraes ◽  
S. S. Fernandes

The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE) of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.


Sign in / Sign up

Export Citation Format

Share Document