scholarly journals Infra-red and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems

2017 ◽  
Vol 134 ◽  
pp. 85-97 ◽  
Author(s):  
Jorge Barcena ◽  
Iñaki Garmendia ◽  
Kostoula Triantou ◽  
Konstatina Mergia ◽  
Beatriz Perez ◽  
...  
Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 22 ◽  
Author(s):  
Michele Ferraiuolo ◽  
Concetta Palumbo ◽  
Andrea Sellitto ◽  
Aniello Riccio

The thermo-structural design of the wing leading edge of hypersonic vehicles is a very challenging task as high gradients in thermal field, and hence high thermal stresses, are expected. Indeed, when employing passive hot structures based thermal protection systems, very high temperatures (e.g., 1400 °C) are expected on the external surface of the wing leading edge, while the internal structural components are required to not exceed a few hundred degrees Celsius (e.g., 400 °C) at the interface with the internal cold structure. Hence, ceramic matrix composites (CMC) are usually adopted for the manufacturing of the external surface of the wing leading edge since they are characterized by good mechanical properties at very high temperatures (up to 1900 °C) together with an excellent thermal shock resistance. Furthermore, the orthotropic behavior of these materials together with the possibility to tailor their lamination sequence to minimize the heat transferred to internal components, make them very attractive for hot structure based thermal protection systems applications. However, the numerical predictions of the thermo-mechanical behavior of such materials, taking into account the influence of each ply (whose thickness generally ranges between 0.2 and 0.3 mm), can be very expensive from a computational point of view. To overcome this limitation, usually, sub-models are adopted, able to focus on specific and critical areas of the structure where very detailed thermo-mechanical analyses can be performed without significantly affecting the computational efficiency of the global model. In the present work, sub-modeling numerical approaches have been adopted for the analysis of the thermo-mechanical behavior of a ceramic matrix composite wing leading edge of a hypersonic vehicle. The main aim is to investigate the feasibility, in terms of computational efficiency and accuracy of results, in using sub-models for dimensioning complex ceramic matrix components. Hence, a comprehensive study on the size of sub-models and on the choice of their boundaries has been carried out in order to assess the advantages and the limitations in approximating the thermo-mechanical behavior of the investigated global ceramic matrix composite component.


2021 ◽  
Author(s):  
LUCA ZOLI ◽  
DILETTA SCITI

High-speed aviation brings many challenges, one being the materials used ensure the aircraft and rockets travelling at hypersonic speed arrive at their destination safely. Control surfaces and thermal protection systems for vehicles flying at Mach 5 or above must withstand extremely hot temperatures and intense mechanical vibrations at launch, during cruising and re-entry into the Earth’s atmosphere. UHTCMCs (Ultra-High Temperature Ceramic Matrix Composites) belong to a new subclass of ceramic matrix composites (CMCs) with superior properties in terms of structural and chemical stability at elevated temperature and erosion/ablation resistance keeping excellent strength-to-weight ratio, thermal shock resistance and adequate damage tolerance. They are the latest potential candidates for thermal protection systems (TPSs), able to outperform bulk ultra-high temperature ceramics (UHTCs). C3HARME is a 4-years EU funded program involving 12 European partners from 6 countries focused on the design, fabrication and testing of UHTCMCs for nearzero erosion nozzles and near-zero ablation TPS tiles. C3harme will look at different technologies coming from the science of bulk ceramics and CMCs and combine them to find out new approaches for their manufacturing. Novel theoretical models and testing methodologies are necessary to characterize properly these materials. This talk will summarize some of the findings and advances of the program, with special emphasis on the innovative approaches that we have implemented.


2020 ◽  
pp. 10-21
Author(s):  
V. G. Babashov ◽  
◽  
N. M. Varrik ◽  

The emergence of new types of space and aviation technology necessitates the development of new types of thermal protection systems capable of operating at high temperature and long operating times. There are several types of thermal protection systems for different operating conditions: active thermal protection systems using forced supply of coolant to the protected surface, passive thermal protection systems using materials with low thermal conductivity without additional heat removal, high-temperature systems, which are simultaneously elements of the bearing structure and provide thermal protection, ablation materials. Heat protection systems in the form of rigid tiles and flexible panels, felt and mats are most common kind of heat protecting systems. This article examines the trends of development of flexible reusable heat protection systems intended for passive protection of aircraft structural structures from overheating.


2020 ◽  
Vol 10 (8) ◽  
pp. 2790
Author(s):  
Wenzheng Zhuang ◽  
Chao Yang ◽  
Zhigang Wu

Hybrid corrugated sandwich (HCS) plates have become a promising candidate for novel thermal protection systems (TPS) due to their multi-functionality of load bearing and thermal protection. For hypersonic vehicles, the novel TPS that performs some structural functions is a potential method of saving weight, which is significant in reducing expensive design/manufacture cost. Considering the novel TPS exposed to severe thermal and aerodynamic environments, the mechanical stability of the HCS plates under fluid-structure-thermal coupling is crucial for preliminary design of the TPS. In this paper, an innovative layerwise finite element model of the HCS plates is presented, and coupled fluid-structure-thermal analysis is performed with a parameter study. The proposed method is validated to be accurate and efficient against commercial software simulation. Results have shown that the mechanical instability of the HCS plates can be induced by fluid-structure coupling and further accelerated by thermal effect. The influences of geometric parameters on thermal buckling and dynamic stability present opposite tendencies, indicating a tradeoff is required for the TPS design. The present analytical model and numerical results provide design guidance in the practical application of the novel TPS.


2014 ◽  
Vol 51 (3) ◽  
pp. 789-800 ◽  
Author(s):  
Alireza Mazaheri ◽  
Walter E. Bruce ◽  
Nathaniel J. Mesick ◽  
Kenneth Sutton

Sign in / Sign up

Export Citation Format

Share Document