3D guidance for hypersonic reentry gliders based on analytical prediction

2020 ◽  
Vol 167 ◽  
pp. 42-51 ◽  
Author(s):  
Liang Pan ◽  
Shuangchun Peng ◽  
Yu Xie ◽  
Yang Liu ◽  
Jianhong Wang
1997 ◽  
Vol 7 (6) ◽  
pp. 603-616 ◽  
Author(s):  
David P. Schmidt ◽  
Michael L. Corradini

1982 ◽  
Vol 12 (3) ◽  
pp. 279-288 ◽  
Author(s):  
T. A. Carroll ◽  
R. D. Noble ◽  
R. G. Buschman

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Lu ◽  
Ritske S. Huismans

AbstractBreakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50–80 °C, significantly smaller than previously suggested.


2021 ◽  
Vol 62 ◽  
pp. 37-46
Author(s):  
Wei Bai ◽  
Anish Roy ◽  
Lingxi Guo ◽  
Jianfeng Xu ◽  
Vadim V. Silberschmidt

Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Ali Zamani ◽  
F. Handan Tezel ◽  
Jules Thibault

Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson’s upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.


2021 ◽  
Vol 40 (4) ◽  
pp. 177-188
Author(s):  
Fangzhou Han ◽  
Can Wang ◽  
Hao Du ◽  
Jing Liao
Keyword(s):  

Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
Atif Zahid ◽  
Faisal Khan ◽  
Naseer Ahmad ◽  
Irfan Sami ◽  
Wasiq Ullah ◽  
...  

A dual mover yokeless multi-tooth (DMYMT) permanent magnet flux switching motor (PM-FSM) design is presented in this article for ropeless elevator applications. The excitation sources, including a field winding and permanent magnet, are on the short mover in the proposed design structure, whereas the stator is a simple slotted iron core, thus reducing the vertical transportation system cost. The operational principle of the proposed DMYMT in PM-FSM is introduced. The proposed dual mover yokeless multi-tooth Permanent Magnet Flux Switching Motor is analyzed and compared for various performance parameters in a Finite Element Analysis package. The proposed machine has high thrust force and cost-effectiveness compared to conventional dual permanent magnet motor. Finally, this paper also develops an analytical model for the proposed structure, validated by comparing it with Finite Element Analysis simulation results. Results show good agreement between analytical prediction and Finite Element Analysis results.


Sign in / Sign up

Export Citation Format

Share Document