Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks

2006 ◽  
Vol 54 (11) ◽  
pp. 2923-2931 ◽  
Author(s):  
Florent Dalmas ◽  
Rémy Dendievel ◽  
Laurent Chazeau ◽  
Jean-Yves Cavaillé ◽  
Catherine Gauthier
2012 ◽  
Vol 5 (4) ◽  
pp. 045101 ◽  
Author(s):  
Dong Choon Lee ◽  
Gyemin Kwon ◽  
Heesuk Kim ◽  
Hyun-Jung Lee ◽  
Bong June Sung

RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22364-22369 ◽  
Author(s):  
Zhiduo Liu ◽  
Dianyu Shen ◽  
Jinhong Yu ◽  
Wen Dai ◽  
Chaoyang Li ◽  
...  

Three dimensional graphene foam incorporated into epoxy matrix greatly enhance its thermal conductivity (up to 1.52 W mK−1) at low graphene foam loading (5.0 wt%), over an eight-fold enhancement in comparison with that of neat epoxy.


2013 ◽  
pp. 219-247
Author(s):  
Dimitrios Tasis ◽  
Kostas Papagelis

2011 ◽  
Vol 2011 (0) ◽  
pp. _G030081-1-_G030081-3
Author(s):  
Yu KURONUMA ◽  
Tomo TAKEDA ◽  
Yasuhide SHINDO ◽  
Fumio NARITA

Author(s):  
S. Xu ◽  
O. Rezvanian ◽  
M. A. Zikry

A new finite element (FE) modeling method has been developed to investigate how the electrical-mechanical-thermal behavior of carbon nanotube (CNT)–reinforced polymer composites is affected by electron tunneling distances, volume fraction, and physically realistic tube aspect ratios. A representative CNT polymer composite conductive path was chosen from a percolation analysis to establish the three-dimensional (3D) computational finite-element (FE) approach. A specialized Maxwell FE formulation with a Fermi-based tunneling resistance was then used to obtain current density evolution for different CNT/polymer dispersions and tunneling distances. Analyses based on thermoelectrical and electrothermomechanical FE approaches were used to understand how CNT-epoxy composites behave under electrothermomechanical loading conditions.


Sign in / Sign up

Export Citation Format

Share Document