ac electrical conductivity
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 44)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Hassan A. H. Alzahrani

Abstract Copper dioxide (CuO) nanoparticles and Multiwall carbon nanotubes (MWCNTs) filled poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) blend matrix (50/50 wt%) based polymer nanocomposites (PNCs) (i.e., PVA/PVP:(15-x)CuO(x)MWCNTs for x=0,1,5,7.5, 10,14, and 15wt%) have been prepared employing the solution-cast method. The morphologies of these PNCs are semicrystalline, according to an X-ray diffraction investigation. The FTIR, SEM, and AFM measurements of PNCs were used to investigate the development of the miscible mix, polymer-polymer and polymer–nanoparticle interactions, and the influence of CuO and MWCNTs nanofillers on the morphology aspects on the main chain of PVA/PVP blend. The nanofiller dispersion signposting for x=14 wt% nanoloading in the PVA–PVP blend matrix significantly enhances the crystalline phase, diminishing the optical energy gap to 2.31eV. The DC conductivity values augment with the upsurge in nanofiller level for maximum x=14wt%. The dielectric and electrical characteristics of these PNCs are investigated for an applied frequency range from 1kHz to 1 MHz. The enhancement in the nanofiller level upto x=14wt% in the PVA/PVP matrix leads to the development of percolating network through the PNCs. These factors boost the dielectric permittivity values substantially, owing to the decrease in the nano-confinement phenomenon. The rise in applied frequency reduces dielectric permittivity and impedance values and enhances ac electrical conductivity. These PNCs having good dielectric and electrical characteristics can be used as frequency tunable nanodielectric material in electronic devices.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3005
Author(s):  
Elsayed Elbayoumy ◽  
Nasser A. El-Ghamaz ◽  
Farid Sh. Mohamed ◽  
Mostafa A. Diab ◽  
Tamaki Nakano

Semiconductor materials based on metal high crosslinked-vinyl polymer composites were prepared through loading of Pd(OAc)2 on both Poly(ethylene-1,2-diyl dimethacrylate) (poly(EDMA)) and poly(ethylene-1,2-diyl dimethacrylate-co-methyl methacrylate) (Poly(EDMA-co-MMA)). The thermochemical properties for both poly(EDMA) and poly(EDMA-co-MMA) were investigated by thermal gravimetric analysis TGA technique. The dielectric permittivity, AC electrical conductivity and conduction mechanism for all the prepared polymers and their Pd(OAc)2 composites were studied. The results showed that the loading of polymers with Pd(OAc)2 led to an increase in the magnitudes of both the dielectric permittivity and AC electrical conductivity (σac). The value of σac increased from 1.38 × 10−5 to 5.84 × 10−5 S m−1 and from 6.40 × 10−6 to 2.48 × 10−5 S m−1 for poly(EDMA) and poly(EDMA-co-MMA), respectively, at 1 MHz and 340 K after loading with Pd(OAc)2. Additionally, all the prepared polymers and composites were considered as semiconductors at all the test frequencies and in the temperature range of 300–340 K. Furthermore, it seems that a conduction mechanism for all the samples could be Quantum Mechanical Tunneling (QMT).


2021 ◽  
Author(s):  
Baba Basha D

Abstract The zinc copper ferrite nanoparticles were synthesized via hydrothermal method. Further, the X-ray diffraction patterns confirmed the formation of cubic spinel structure. The microstructure was analyzed using the FESEM and TEM study. The results revealed that the symmetrical and asymmetrical nanospheres were found in the surface morphology. The dielectric studies indicated that the behavior of dielectric constant and dielectric loss as a function of frequency and composition. In addition, the Maxwell-Wagner interfacial polarization was observed. Similarly, the ac-electrical conductivity behavior was well understood. The M-H loops indicated the ferromagnetic behavior of ZnCu ferrite samples.


2021 ◽  
Author(s):  
A. Mallikarjuna ◽  
N. Suresh Kumar ◽  
T. Anil Babu ◽  
S. Ramesh ◽  
Chandra Babu Naidu K

Abstract (1-x) (Al0.2La0.8TiO3) + (x) (BiZnFeO3) (x = 0.2 - 0.8) [ALTBZFO] nanocomposites were synthesized via hydrothermal method. The X-ray diffraction patterns indicated the phase transformation from tetragonal to cubic for x = 0.2 to 0.4 - 0.8 samples, respectively. The surface morphology showed the existence of nanospheres like structures. At 1 MHz frequency also, the dielectric constant was increased from 230 to 710 for x = 0.2 – 0.6 samples, respectively. But, interestingly, x = 0.6 nanocomposite exhibited the negative dielectric behavior having the dielectric constant (ε') ~ -58.5 and dielectric loss (ε") ~ -417 at 8 MHz. Likewise, x = 0.6 sample showed ac-electrical conductivity (σac) -0.159 S/cm at 6 MHz. Hence, these kinds of materials can provide high charge stored capacitor, and perfect absorber applications.


2021 ◽  
Author(s):  
Thekrayat Hassan AlAbdulaal ◽  
Manal AlShadidi ◽  
Mai Hussien ◽  
Ganesh Vanga ◽  
Abdel-Fatah Bouzidi ◽  
...  

Abstract In this proposed study, Erbium (Er3+)-doped ZnO nanocomposites were prepared through the effective, basic, and green combustion method. The significant effects of Er-dopants on the structural, morphological features, dielectric and optical behaviors of the pure ZnO matrix as well as Er2O3–ZnO nanostructured materials were investigated applying X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation Infrared spectroscopy (FTIR), and UV–Vis spectrophotometer techniques. These results showed that the synthesized Er2O3–ZnO nanocomposites are well polycrystalline. The Er2O3–ZnO nanocomposites are almost uniformly distributed on the surface morphologies. Furthermore, UV-Vis diffuse reflectance spectroscopy, AC electrical conductivity, and dielectric properties' current-voltage characteristics were utilized to examine the influence of erbium-doping on the optical properties, energy bandgaps of the proposed Er2O3–ZnO nanostructured powder. The tested nano-samples were applied for the visible light photodegradation of p-chlorophenol (4-CP) and p-nitrophenol (4-NP). The Er-doped ZnO ratio affects the photocatalytic activity of the ZnO matrix. This current research substantiated that more than 99.5% of 4-CP and 4-NP were photodegraded through 30 min of irradiation. Four times, the Er: ZnO nanocatalysts were used and still displayed an efficiency of more than 96.5% for 4-CP and 4-NP degradations in the specified period = 30 min. The as-prepared Er2O3-ZnO nanostructured are considered novel potential candidates in broad nano-applications from visible photocatalytic degradation of waste pollutants to the electronic varistor devices.


2021 ◽  
Author(s):  
T.H AlAbdulaal ◽  
Manal AlShadidi ◽  
Mai Hussien ◽  
Ganesh Vanga ◽  
Abdel-Fatah Bouzidi ◽  
...  

Abstract In this study, a combustion method as an efficient, easy, low-cost, and eco-friendly technique was used to synthesize nano-ZnO as a matrix with different yttrium doping ratios with different doping concentrations. Not only X-ray diffraction (XRD), but also scanning electron microscopy (SEM), and Fourier transformation Infrared spectroscopy (FT-IR) technique employed to characterize the structural and surface morphology of the Y2O3-ZnO nanocomposites. The obtained results supported ZnO's growth from crystalline to satisfactory nanoparticle structure by changing the yttrium doping concentrations inside ZnO nanoparticles. Moreover, UV-Vis diffuse reflectance spectroscopy, AC electrical conductivity, and current-voltage characteristics were considered to characterize the effects of yttrium doping on the energy bandgaps and electrical/dielectric properties and discussed the parameters of the ceramic varistors of the studied Y2O3-ZnO nano-complex oxides. The photocatalytic degradation efficiency of phenol, Methylene Blue, and Rhodamine B was investigated using all prepared Y2O3-ZnO nanostructured samples. As the yttrium doping ratios increased, the photocatalytic efficiency increased. After the addition of moderate Y3+ ions-doping, Further generation of hydroxyl radicals over ZnO. For Y2O3-ZnO (S5), the optimal photocatalyst is a degradation of 100 % of phenol, Methylene Blue, and Rhodamine B solutions compared to 80% of photocatalysis for ZnO stand alone. The prepared Y2O3-ZnO nanostructured materials are considered novel potential candidates in broad nano-applications ranging from biomedical and photocatalytic degradation for organic dyes and phenol to environmental and varistor applications.


Sign in / Sign up

Export Citation Format

Share Document