Three-dimensional hydrogel scaffolds facilitate in vitro self-renewal of human skin-derived precursors

2014 ◽  
Vol 10 (7) ◽  
pp. 3177-3187 ◽  
Author(s):  
Xinyue Wang ◽  
Shu Liu ◽  
Qian Zhao ◽  
Na Li ◽  
Huishan Zhang ◽  
...  
2001 ◽  
Vol 23 (5) ◽  
pp. 309-318 ◽  
Author(s):  
K. Schlotmann ◽  
M. Kaeten ◽  
A. F. Black ◽  
O. Damour ◽  
M. Waldmann-Laue ◽  
...  

2018 ◽  
Vol 782 ◽  
pp. 103-115
Author(s):  
Yang Zi Zhao ◽  
You Fa Wang

Being one of the three elements of tissue engineering, three-dimensional porous structure scaffold plays an important role in tissue engineering. As it not only prvovide cells for the life, but also serves as a template to guide tissue regeneration and control of organizational structure and other functions. In this study, hyaluronic acid and gelatin are successfully cross-linked by 1-ethyl- (3-dimethylaminopropyl) -carbodiimide hydrochloride (EDC) , and compound β-TCP microspheres to prepare porous hydrogel scaffolds. The microspheres were analyzed by X-ray diffraction (XRD). The scaffolds were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). At the same time, the compressive strength, swelling ratio, degradation of the scaffold were tested. To assess the in vitro cell compatibility of the scaffolds, mouse L929 fibroblasts were seeded onto scaffolds for cell morphology and cell viability studies. The results showed that the pore size of the porous scaffold can be adjusted by changing the ratio of gelatin to hyaluronic acid (HA), increasing the proportion of hyaluronic acid in a certain range, pore size will be significantly increased. With the increase of the proportion of hyaluronic acid in the scaffold, the swelling ratio and the degradation rate also increased. The compressive strength of the scaffold increased with the increase of the proportion of gelatin. The appropriate ratio of β-TCP can promote cell growth and proliferation.


Aging Cell ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 661-674 ◽  
Author(s):  
Shuang Liu ◽  
Shu Liu ◽  
Xinyue Wang ◽  
Jiaxi Zhou ◽  
Yujing Cao ◽  
...  
Keyword(s):  

2020 ◽  
Vol 21 (22) ◽  
pp. 8514
Author(s):  
Chikako Yoshikawa-Murakami ◽  
Yuki Mizutani ◽  
Akemi Ryu ◽  
Eiji Naru ◽  
Takashi Teramura ◽  
...  

Melanin incorporated into keratinocytes plays an important role in photoprotection; however, abnormal melanin accumulation causes hyperpigmentary disorders. To understand the mechanism behind the accumulation of excess melanin in the skin, it is essential to clarify the spatial distribution of melanosomes or melanin in the epidermis. Although several markers have been used to detect melanosomes or melanin, no suitable markers to determine the precise localization of melanin in the epidermis have been reported. In this study, we showed that melanocore-interacting Kif1c-tail (M-INK), a recently developed fluorescent probe for visualizing mature melanosomes, binds to purified melanin in vitro, and applied it for detecting melanin in human skin tissues. Frozen skin sections from different phototypes were co-stained for the hemagglutinin (HA)-tagged M-INK probe and markers of melanocytes or keratinocytes, and a wide distribution of melanin was observed in the epidermis. Analysis of the different skin phototypes indicated that the fluorescent signals of HA-M-INK correlated well with skin color. The reconstruction of three-dimensional images of epidermal sheets enabled us to observe the spatial distribution of melanin in the epidermis. Thus, the HA-M-INK probe is an ideal tool to individually visualize melanin (or melanosome) distribution in melanocytes and in keratinocytes in skin tissues.


1994 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
T. Donnelly ◽  
B. Decker ◽  
M. Stemp ◽  
L. A. Rheins ◽  
P. Logemann

2019 ◽  
Vol 139 (5) ◽  
pp. S50
Author(s):  
J. Wetter ◽  
L.N. Miller ◽  
V. Todorovic ◽  
P. Honore ◽  
V.E. Scott

2021 ◽  
Vol 22 (11) ◽  
pp. 5790
Author(s):  
Arnout Mieremet ◽  
Richard W. J. Helder ◽  
Andreea Nadaban ◽  
Walter A. Boiten ◽  
Gert S. Gooris ◽  
...  

In vitro skin tissue engineering is challenging due to the manifold differences between the in vivo and in vitro conditions. Yet, three-dimensional (3D) human skin equivalents (HSEs) are able to mimic native human skin in many fundamental aspects. However, the epidermal lipid barrier formation, which is essential for the functionality of the skin barrier, remains compromised. Recently, HSEs with an improved lipid barrier formation were generated by (i) incorporating chitosan in the dermal collagen matrix, (ii) reducing the external oxygen level to 3%, and (iii) inhibiting the liver X receptor (LXR). In this study, we aimed to determine the synergic effects in full-thickness models (FTMs) with combinations of these factors as single-, double-, and triple-targeted optimization approaches. The collagen–chitosan FTM supplemented with the LXR inhibitor showed improved epidermal morphogenesis, an enhanced lipid composition, and a better lipid organization. Importantly, barrier functionality was improved in the corresponding approach. In conclusion, our leading optimization approach substantially improved the epidermal morphogenesis, barrier formation, and functionality in the FTM, which therefore better resembled native human skin.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 121.2-122
Author(s):  
A. E. Matei ◽  
C. W. Chen ◽  
L. Kiesewetter ◽  
A. H. Györfi ◽  
Y. N. LI ◽  
...  

Background:The complex pathophysiological processes that result in fibrotic tissue remodeling in systemic sclerosis involve interplay between multiple cell types (1). Experimental models of fibrosis are essential to provide a conceptual understanding of the pathogenesis of these diseases and to test antifibrotic drugs. Current models of fibrosis have important limitations: thein vivomodels rely on species that are phylogenetically distant, whereas thein vitromodels are oversimplified cultures of a single cell type in an artificial two-dimensional environment of excessive stiffness, which imposes an unphysiological cell polarization (2).Objectives:Here we evaluated the potential use of vascularized, three-dimensionalin vitrohuman skin equivalents as a novel model of skin fibrosis and a platform for the evaluation of antifibrotic drugs.Methods:Skin equivalents were generated by seeding human endothelial cells, fibroblasts and keratinocytes on a decellularized porcine extracellular matrix with perfusable vascular structure. The skin models were cultured for one month in a system that ensured perfusion of the vascular network at physiological pressure. Fibrotic transformation induced by TGFβ and response to nintedanib as an established antifibrotic drug was evaluated by capillary Western immunoassays, qPCR, histology and immunostaining.Results:The vascularized human skin equivalents formed the major skin structures relevant for the pathogenesis of fibrosis: a polarized, fully matured epidermis, a stratified dermis and a perfused vessel system with small capillaries. Exposure to TGFβ led to the fibrotic transformation of the skin equivalents, with activated TGFβ downstream pathways, increased fibroblast-to-myofibroblast transition and excessive deposition of extracellular matrix. Treatment of models exposed to TGFβ with nintedanib (a drug with proven antifibrotic effects) ameliorated the fibrotic transformation of skin equivalents with reduced TGFβ signaling, fibroblast-to-myofibroblast transition and decreased extracellular matrix deposition.Conclusion:Here we describe a novelin vitromodel of skin fibrosis. Our data show that vascularized skin equivalents can reproduce all skin layers affected by fibrosis, that, upon exposure to TGFβ, these models recapitulate key features of fibrotic skin and that these skin models can be used as a platform for evaluation of antifibrotic drugs in a setting with high relevance for human disease.References:[1]Distler JHW, Gyorfi AH, Ramanujam M, Whitfield ML, Konigshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nature reviews Rheumatology. 2019;15(12):705-30.[2]Garrett SM, Baker Frost D, Feghali-Bostwick C. The mighty fibroblast and its utility in scleroderma research. Journal of scleroderma and related disorders. 2017;2(2):69-134.Disclosure of Interests:Alexandru-Emil Matei: None declared, Chih-Wei Chen: None declared, Lisa Kiesewetter: None declared, Andrea-Hermina Györfi: None declared, Yi-Nan Li: None declared, Thuong Trinh-Minh: None declared, Toin van Kuppevelt: None declared, Jan Hansmann: None declared, Astrid Juengel: None declared, Georg Schett Speakers bureau: AbbVie, BMS, Celgene, Janssen, Eli Lilly, Novartis, Roche and UCB, Florian Groeber-Becker: None declared, Jörg Distler Grant/research support from: Boehringer Ingelheim, Consultant of: Boehringer Ingelheim, Paid instructor for: Boehringer Ingelheim, Speakers bureau: Boehringer Ingelheim


Sign in / Sign up

Export Citation Format

Share Document