3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy

2018 ◽  
Vol 79 ◽  
pp. 37-59 ◽  
Author(s):  
Hongshi Ma ◽  
Chun Feng ◽  
Jiang Chang ◽  
Chengtie Wu
Author(s):  
Zhixiang Fang ◽  
Jihang Chen ◽  
Jiangxia Pan ◽  
Guoqiang Liu ◽  
Chen Zhao

Three-dimensional (3D) printing concept has been successfully employed in regenerative medicine to achieve individualized therapy due to its benefit of a rapid, accurate, and predictable production process. Traditional biocomposites scaffolds (SCF) are primarily utilised for bone tissue engineering; nevertheless, over the last few years, there has already been a dramatic shift in the applications of bioceramic (BCR) SCF. As a direct consequence, this study focused on the structural, degeneration, permeation, and physiological activity of 3D-printed BCR (3DP-B) SCF with various conformations and work systems (macros, micros, and nanos ranges), as well as their impacts on the mechanical, degeneration, porosity, and physiological activities. In addition, 3DP-B SCF are highlighted in this study for potential uses applied from bone tissue engineering (BTE) to bone tumor treatment. The study focused on significant advances in practical 3DP-B SCF that can be utilized for tumor treatment as well as bone tissue regeneration (BTR). Given the difficulties in treating bone tumors, these operational BCR SCF offer a lot of promise in mending bone defects caused by surgery and killing any remaining tumor cells to accomplish bone tumor treatment. Furthermore, a quick assessment of future developments in this subject was presented. The study not only summarizes recent advances in BCR engineering, but it also proposes a new therapeutic strategy focused on the extension of conventional ceramics’ multifunction to a particular diagnosis.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2018 ◽  
Vol 33 (14) ◽  
pp. 1948-1959 ◽  
Author(s):  
Arnaud Bruyas ◽  
Frank Lou ◽  
Alexander M. Stahl ◽  
Michael Gardner ◽  
William Maloney ◽  
...  

Abstract


2018 ◽  
Vol 5 (4) ◽  
pp. 045403 ◽  
Author(s):  
Wenfeng Luo ◽  
Shuangying Zhang ◽  
Yuewei Lan ◽  
Chen Huang ◽  
Chao Wang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 367 ◽  
Author(s):  
Nehar Celikkin ◽  
Simone Mastrogiacomo ◽  
X. Walboomers ◽  
Wojciech Swieszkowski

Bone tissue engineering is a rapidly growing field which is currently progressing toward clinical applications. Effective imaging methods for longitudinal studies are critical to evaluating the new bone formation and the fate of the scaffolds. Computed tomography (CT) is a prevailing technique employed to investigate hard tissue scaffolds; however, the CT signal becomes weak in mainly-water containing materials, which hinders the use of CT for hydrogels-based materials. Nevertheless, hydrogels such as gelatin methacrylate (GelMA) are widely used for tissue regeneration due to their optimal biological properties and their ability to induce extracellular matrix formation. To date, gold nanoparticles (AuNPs) have been suggested as promising contrast agents, due to their high X-ray attenuation, biocompatibility, and low toxicity. In this study, the effects of different sizes and concentrations of AuNPs on the mechanical properties and the cytocompatibility of the bulk GelMA-AuNPs scaffolds were evaluated. Furthermore, the enhancement of CT contrast with the cytocompatible size and concentration of AuNPs were investigated. 3D printed GelMA and GelMA-AuNPs scaffolds were obtained and assessed for the osteogenic differentiation of mesenchymal stem cells (MSC). Lastly, 3D printed GelMA and GelMA-AuNPs scaffolds were scanned in a bone defect utilizing µCT as the proof of concept that the GelMA-AuNPs are good candidates for bone tissue engineering with enhanced visibility for µCT imaging.


Author(s):  
Pierre P.D. Kondiah ◽  
Yahya E. Choonara ◽  
Pariksha J. Kondiah ◽  
Thashree Marimuthu ◽  
Lisa C. du Toit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document