scholarly journals Modelling a highly decarbonised North Sea energy system in 2050: a multinational approach

2021 ◽  
pp. 100080
Author(s):  
Martínez Gordón R ◽  
Sánchez Diéguez M ◽  
Fattahi A ◽  
Morales España G ◽  
Sijm J ◽  
...  
Keyword(s):  
Author(s):  
Juan Gea Bermúdez ◽  
Kaushik Das ◽  
Hardi Koduvere ◽  
Matti Juhani Koivisto

This paper proposes a mathematical model to simulate Day-ahead markets of large-scale multi-energy systems with high share of renewable energy. Furthermore, it analyses the importance of including unit commitment when performing such analysis. The results of the case study, which is performed for the North Sea region, show the influence of massive renewable penetration in the energy sector and increasing electrification of the district heating sector towards 2050, and how this impacts the role of other energy sources such as thermal and hydro. The penetration of wind and solar is likely to challenge the need for balancing in the system as well as the profitability of thermal units. The degree of influence of the unit commitment approach is found to be dependent on the configuration of the energy system. Overall, including unit commitment constraints with integer variables leads to more realistic behaviour of the units, at the cost of increasing considerably the computational time. Relaxing integer variables reduces significantly the computational time, without highly compromising the accuracy of the results. The proposed model, together with the insights from the study case, can be specially useful for system operators for optimal operational planning.


2020 ◽  
Author(s):  
Matti Koivisto ◽  
Juan Gea-Bermúdez ◽  
Polyneikis Kanellas ◽  
Kauhshik Das ◽  
Poul Sørensen

Abstract. This paper analyses several energy system scenarios towards 2050 for the North Sea region. With focus on offshore wind power, the impacts of meshed offshore grid and sector coupling are studied. First, a project-based scenario, where each offshore wind power plant is connected individually to onshore, is compared to a meshed grid scenario. Both the amount of offshore wind installed and the level of curtailment are assessed. Then, these results are compared to a scenario with sector coupling included. The results show that while the introduction of a meshed grid can increase the amount of offshore wind installed towards 2050, sector coupling is expected to be a more important driver for increasing offshore wind installations. In addition, sector coupling can significantly decrease the level of offshore wind curtailment.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 88
Author(s):  
Juan Gea-Bermúdez ◽  
Kaushik Das ◽  
Hardi Koduvere ◽  
Matti Juhani Koivisto

This paper proposes a mathematical model in order to simulate Day-ahead markets of large-scale multi-energy systems with a high share of renewable energy. Furthermore, it analyses the importance of including unit commitment when performing such analysis. The results of the case study, which is performed for the North Sea region, show the influence of massive renewable penetration in the energy sector and increasing electrification of the district heating sector towards 2050, and how this impacts the role of other energy sources, such as thermal and hydro. The penetration of wind and solar is likely to challenge the need for balancing in the system as well as the profitability of thermal units. The degree of influence of the unit commitment approach is found to be dependent on the configuration of the energy system. Overall, including unit commitment constraints with integer variables leads to more realistic behaviour of the units, at the cost of considerably increasing the computational time. Relaxing integer variables significantly reduces the computational time, without highly compromising the accuracy of the results. The proposed model, together with the insights from the study case, can be especially useful for system operators for optimal operational planning.


2020 ◽  
Vol 5 (4) ◽  
pp. 1705-1712
Author(s):  
Matti Koivisto ◽  
Juan Gea-Bermúdez ◽  
Polyneikis Kanellas ◽  
Kaushik Das ◽  
Poul Sørensen

Abstract. This paper analyses several energy system scenarios towards 2050 for the North Sea region. With a focus on offshore wind power, the impacts of meshed offshore grid and sector coupling are studied. First, a project-based scenario, where each offshore wind power plant is connected individually to the onshore power system, is compared to a meshed grid scenario. Both the amount of offshore wind power installed and the level of curtailment are assessed. Then, these results are compared to a scenario with sector coupling included. The results show that while the introduction of a meshed grid can increase the amount of offshore wind power installed towards 2050, sector coupling is expected to be a more important driver for increasing offshore wind power installations. In addition, sector coupling can significantly decrease the level of offshore wind curtailment.


2021 ◽  
Vol 54 ◽  
pp. 205-215
Author(s):  
Charlotte Neubacher ◽  
Dirk Witthaut ◽  
Jan Wohland

Abstract. Wind power is a vital ingredient for energy system transformation in line with the Paris Agreement. Limited land availability for onshore wind parks and higher wind speeds over sea make offshore wind energy increasingly attractive. While wind variability on different timescales poses challenges for planning and system integration, little focus has been given to multi-decadal variability. Our research therefore focuses on the characteristics of wind power on timescales exceeding ten years. Based on detrended wind data from the coupled centennial reanalysis CERA-20C, we calculate European long-term offshore wind power potential and analyze its variability focusing on three locations with distinct climatic conditions: the German North Sea, the Greek Mediterranean and the Portuguese Atlantic coast. We find strong indications for two significant multi-decadal modes that are identified consistently using two independent spectral analysis methods and in the 20-year running mean time series. In winter, the long-term evolution of wind power and the North Atlantic Oscillation (NAO) are directly linked in Germany and Portugal. While German North Sea wind power is positively correlated with the NAO (r=0.82), Portuguese Atlantic coast generation is anti-correlated with the NAO (r=-0.91). We evaluate the corresponding potential for spatial balancing in Europe and report substantial benefits from European cooperation. In particular, optimized allocations off the Portuguese Atlantic coast and in the German North Sea allow to reduce multi-decadal generation variance by a factor of 3–10 compared with country-level approaches.


2020 ◽  
Author(s):  
Andrea N. Hahmann ◽  
Alfredo Peña ◽  
Sara C. Pryor ◽  
Graziela Luzia

<p>Net carbon dioxide emissions have to be brought down to zero in the coming decades to hold the rise in global temperature in this century below the 2°C from pre-industrial levels. This target implies a fundamental transformation of the global energy system that will have to rely heavily on renewable energy sources. Among these, the harvesting of electricity from the wind plays an important role. Yet, climate change itself can impact the supply of renewable energy. Therefore, national climate mitigation plans need to make informed decisions regarding any changes to future extractable wind resources to consider the possible risks.</p><p>In this work, we explore the changes in wind climatology over the North Sea in the different shared socioeconomic pathways (SSP) emission scenarios as identified by the output of a selection of CMIP6 simulations. Many northern European countries rely on the wind resources of the North Sea for climate mitigation. As a first step, however, we validate various aspects of the wind speed and direction and their variability in the historical CMIP6 simulations as compared to multiple long-term reanalyses. The work also includes calculations of annual energy production for existing and planned wind farms in the North Sea and how these could change in the coming decades.</p>


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4298 ◽  
Author(s):  
Md. Nasimul Islam Maruf

Sector coupling is one of the emerging topics in recent energy and climate change policy discussions. It can play a significant role in creating the pathway of a renewable-based energy system in the European energy sector. The North Sea region is very likely to play a key role in the transition to a sustainable energy system. Although different energy modelling approaches allow a versatile use, they lead to the problem of an unclear understanding of specific aspects of sector coupling, and the relevance of existing tools and techniques to model and analyze such a system. This paper is aimed at providing a comprehensive understanding of sector coupling and its incorporation in energy system models. Following a thorough literature review on sector coupling and energy system modelling, the paper outlines an approach to select an appropriate tool based on the specific rationales of the research. The paper also presents the open energy modelling framework, ‘Oemof’, as an open model tool to address the complex challenges of energy systems. The conclusions from the literature review provide a detailed understanding of the concept of sector coupling and indicate that it can be advantageous from the viewpoints of decarbonization, flexibility, network optimization, and system efficiency. To solve the coupling barriers, diversified techno-socio-economic circumstances should be taken into account through the use of model collaboration. It is also demonstrated how a list of appropriate tools for model collaboration can be picked up methodologically from an available wide range of models. Finally, ‘Oemof’ is hypothesized as a progressive tool to design a sector-coupled and renewable-based energy system in the North Sea region.


Author(s):  
Md. Nasimul Islam Maruf

Sector coupling is one of the emerging topics in recent energy and climate change policy discussions. It can play a significant role in creating the pathway of a renewable-based energy system in the European energy sector. The North Sea region is very likely to play a key role in the transition to a sustainable energy system. Though different energy modelling approaches allow a versatile use, they lead to the problem of an unclear understanding of specific aspects of sector coupling, and the relevance of existing tools and techniques to model and analyze such a system. This paper is aimed at providing a comprehensive understanding of sector coupling and its incorporation in energy system models. Followed by a thorough literature review on sector coupling and energy system modelling, the paper outlines an approach to select an appropriate tool based on the specific rationales of the research. The paper also presents ‘Oemof’ as an open model tool to address the complex challenges of energy systems. The conclusions from the literature review provide a detailed understanding of the concept of sector coupling and indicate that it can be advantageous from the viewpoints of decarbonization, flexibility, network optimization, and system efficiency. To solve the coupling barriers, diversified techno-socio-economic circumstances should be taken into account through the use of model collaboration. It is also demonstrated how a list of appropriate tools for model collaboration can be picked up methodologically from an available wide range of models. Finally, ‘Oemof’ is hypothesized as a progressive tool to design a sector-coupled and renewable-based energy system in the North Sea region.


Sign in / Sign up

Export Citation Format

Share Document