scholarly journals Multi-decadal offshore wind power variability can be mitigated through optimized European allocation

2021 ◽  
Vol 54 ◽  
pp. 205-215
Author(s):  
Charlotte Neubacher ◽  
Dirk Witthaut ◽  
Jan Wohland

Abstract. Wind power is a vital ingredient for energy system transformation in line with the Paris Agreement. Limited land availability for onshore wind parks and higher wind speeds over sea make offshore wind energy increasingly attractive. While wind variability on different timescales poses challenges for planning and system integration, little focus has been given to multi-decadal variability. Our research therefore focuses on the characteristics of wind power on timescales exceeding ten years. Based on detrended wind data from the coupled centennial reanalysis CERA-20C, we calculate European long-term offshore wind power potential and analyze its variability focusing on three locations with distinct climatic conditions: the German North Sea, the Greek Mediterranean and the Portuguese Atlantic coast. We find strong indications for two significant multi-decadal modes that are identified consistently using two independent spectral analysis methods and in the 20-year running mean time series. In winter, the long-term evolution of wind power and the North Atlantic Oscillation (NAO) are directly linked in Germany and Portugal. While German North Sea wind power is positively correlated with the NAO (r=0.82), Portuguese Atlantic coast generation is anti-correlated with the NAO (r=-0.91). We evaluate the corresponding potential for spatial balancing in Europe and report substantial benefits from European cooperation. In particular, optimized allocations off the Portuguese Atlantic coast and in the German North Sea allow to reduce multi-decadal generation variance by a factor of 3–10 compared with country-level approaches.

2020 ◽  
Author(s):  
Matti Koivisto ◽  
Juan Gea-Bermúdez ◽  
Polyneikis Kanellas ◽  
Kauhshik Das ◽  
Poul Sørensen

Abstract. This paper analyses several energy system scenarios towards 2050 for the North Sea region. With focus on offshore wind power, the impacts of meshed offshore grid and sector coupling are studied. First, a project-based scenario, where each offshore wind power plant is connected individually to onshore, is compared to a meshed grid scenario. Both the amount of offshore wind installed and the level of curtailment are assessed. Then, these results are compared to a scenario with sector coupling included. The results show that while the introduction of a meshed grid can increase the amount of offshore wind installed towards 2050, sector coupling is expected to be a more important driver for increasing offshore wind installations. In addition, sector coupling can significantly decrease the level of offshore wind curtailment.


2020 ◽  
Vol 5 (4) ◽  
pp. 1705-1712
Author(s):  
Matti Koivisto ◽  
Juan Gea-Bermúdez ◽  
Polyneikis Kanellas ◽  
Kaushik Das ◽  
Poul Sørensen

Abstract. This paper analyses several energy system scenarios towards 2050 for the North Sea region. With a focus on offshore wind power, the impacts of meshed offshore grid and sector coupling are studied. First, a project-based scenario, where each offshore wind power plant is connected individually to the onshore power system, is compared to a meshed grid scenario. Both the amount of offshore wind power installed and the level of curtailment are assessed. Then, these results are compared to a scenario with sector coupling included. The results show that while the introduction of a meshed grid can increase the amount of offshore wind power installed towards 2050, sector coupling is expected to be a more important driver for increasing offshore wind power installations. In addition, sector coupling can significantly decrease the level of offshore wind curtailment.


2020 ◽  
Author(s):  
Charlotte Neubacher ◽  
Jan Wohland ◽  
Dirk Witthaut

<p>Wind power generation is a promising technology to reduce greenhouse gas emissions in line with the Paris Agreement.  In the recent years, the global offshore wind market grew around 30% per year but the full potential of this technology is still not fully exploited. In fact, offshore wind power has the potential to generate more than the worldwide energy demand of today. The high variability of wind on many different timescales does, however, pose serious technical challenges for system integration and system security.  With a few exceptions, little focus has been given to multi-decadal variability. Our research therefore focuses on timescales exceeding ten years.</p><p>Based on detrended wind data from the coupled centennial reanalysis CERA-20C, we calculate long-term offshore wind power generation time series across Europe and analyze their variability with a focus on the North Sea, the Mediterranean Sea and the Atlantic Ocean. Our approach is based on two independent spectral analysis methods, namely power spectral density and singular spectrum analysis. The latter is particularly well suited for relatively short and noisy time series. In both methods an AR(1)-process is considered as a realistic model for the noisy background. The analysis is complemented by computing the 20yr running mean to also gain insight into long term developments and quantify benefits of large-scale balancing.</p><p>We find strong indications for two significant multidecadal modes, which appear consistently independent of the statistical method and at all locations subject to our investigation. Moreover, we reveal potential to mitigate multidecadal offshore wind power generation variability via spatial balancing in Europe. In particular, optimized allocations off the Portuguese coast and in the North Sea allow for considerably more stable wind power generation on multi-decadal time scales.</p>


Energy ◽  
2021 ◽  
Vol 226 ◽  
pp. 120364
Author(s):  
Sheila Carreno-Madinabeitia ◽  
Gabriel Ibarra-Berastegi ◽  
Jon Sáenz ◽  
Alain Ulazia

2012 ◽  
Vol 43 ◽  
pp. 224-233 ◽  
Author(s):  
Blaise Sheridan ◽  
Scott D. Baker ◽  
Nathaniel S. Pearre ◽  
Jeremy Firestone ◽  
Willett Kempton

2017 ◽  
Vol 27 (4) ◽  
pp. 346-356 ◽  
Author(s):  
Torsten Wichtmann ◽  
Theodoros Triantafyllidis ◽  
Stylianos Chrisopoulos ◽  
Hauke Zachert

Resources ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 454-470 ◽  
Author(s):  
Aymeric Buatois ◽  
Madeleine Gibescu ◽  
Barry Rawn ◽  
Mart van der Meijden

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianguang Lu ◽  
Peter Sherman ◽  
Xinyu Chen ◽  
Shi Chen ◽  
Xi Lu ◽  
...  

Abstract This paper considers options for a future Indian power economy in which renewables, wind and solar, could meet 80% of anticipated 2040 power demand supplanting the country’s current reliance on coal. Using a cost optimization model, here we show that renewables could provide a source of power cheaper or at least competitive with what could be supplied using fossil-based alternatives. The ancillary advantage would be a significant reduction in India’s future power sector related emissions of CO2. Using a model in which prices for wind turbines and solar PV systems are assumed to continue their current decreasing trend, we conclude that an investment in renewables at a level consistent with meeting 80% of projected 2040 power demand could result in a reduction of 85% in emissions of CO2 relative to what might be expected if the power sector were to continue its current coal dominated trajectory.


Sign in / Sign up

Export Citation Format

Share Document