Towards a robust FANET: Distributed node importance estimation-based connectivity maintenance for UAV swarms

2021 ◽  
pp. 102734
Author(s):  
Chao Liu ◽  
Zhongshan Zhang
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 497
Author(s):  
Huan Li ◽  
Ruisheng Zhang ◽  
Zhili Zhao ◽  
Xin Liu

Community detection is of great significance in understanding the structure of the network. Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed in this study by combining the modularity function and node importance with the original LPA. LPA-MNI first identify the initial communities according to the value of modularity. Subsequently, the label propagation is used to cluster the remaining nodes that have not been assigned to initial communities. Meanwhile, node importance is used to improve the node order of label updating and the mechanism of label selecting when multiple labels are contained by the maximum number of nodes. Extensive experiments are performed on twelve real-world networks and eight groups of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity, and more reasonable community numbers when compared with other six algorithms. In addition, LPA-MNI is shown to be more robust than the traditional LPA algorithm.


2013 ◽  
Vol 32 (3) ◽  
pp. 299-323 ◽  
Author(s):  
Paolo Robuffo Giordano ◽  
Antonio Franchi ◽  
Cristian Secchi ◽  
Heinrich H Bülthoff

2018 ◽  
Vol 8 (10) ◽  
pp. 1914 ◽  
Author(s):  
Lincheng Jiang ◽  
Yumei Jing ◽  
Shengze Hu ◽  
Bin Ge ◽  
Weidong Xiao

Identifying node importance in complex networks is of great significance to improve the network damage resistance and robustness. In the era of big data, the size of the network is huge and the network structure tends to change dynamically over time. Due to the high complexity, the algorithm based on the global information of the network is not suitable for the analysis of large-scale networks. Taking into account the bridging feature of nodes in the local network, this paper proposes a simple and efficient ranking algorithm to identify node importance in complex networks. In the algorithm, if there are more numbers of node pairs whose shortest paths pass through the target node and there are less numbers of shortest paths in its neighborhood, the bridging function of the node between its neighborhood nodes is more obvious, and its ranking score is also higher. The algorithm takes only local information of the target nodes, thereby greatly improving the efficiency of the algorithm. Experiments performed on real and synthetic networks show that the proposed algorithm is more effective than benchmark algorithms on the evaluation criteria of the maximum connectivity coefficient and the decline rate of network efficiency, no matter in the static or dynamic attack manner. Especially in the initial stage of attack, the advantage is more obvious, which makes the proposed algorithm applicable in the background of limited network attack cost.


2016 ◽  
Vol Vol. 17 no. 3 (Distributed Computing and...) ◽  
Author(s):  
Milan Erdelj ◽  
Nathalie Mitton ◽  
Tahiry Razafindralambo

International audience In this work we present a decentralized deployment algorithm for wireless mobile sensor networks focused on deployment Efficiency, connectivity Maintenance and network Reparation (EMR). We assume that a group of mobile sensors is placed in the area of interest to be covered, without any prior knowledge of the environment. The goal of the algorithm is to maximize the covered area and cope with sudden sensor failures. By relying on the locally available information regarding the environment and neighborhood, and without the need for any kind of synchronization in the network, each sensor iteratively chooses the next-step movement location so as to form a hexagonal lattice grid. Relying on the graph of wireless mobile sensors, we are able to provide the properties regarding the quality of coverage, the connectivity of the graph and the termination of the algorithm. We run extensive simulations to provide compactness properties of the deployment and evaluate the robustness against sensor failures. We show through the analysis and the simulations that EMR algorithm is robust to node failures and can restore the lattice grid. We also show that even after a failure, EMR algorithm call still provide a compact deployment in a reasonable time.


Sign in / Sign up

Export Citation Format

Share Document