scholarly journals LPA-MNI: An Improved Label Propagation Algorithm Based on Modularity and Node Importance for Community Detection

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 497
Author(s):  
Huan Li ◽  
Ruisheng Zhang ◽  
Zhili Zhao ◽  
Xin Liu

Community detection is of great significance in understanding the structure of the network. Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed in this study by combining the modularity function and node importance with the original LPA. LPA-MNI first identify the initial communities according to the value of modularity. Subsequently, the label propagation is used to cluster the remaining nodes that have not been assigned to initial communities. Meanwhile, node importance is used to improve the node order of label updating and the mechanism of label selecting when multiple labels are contained by the maximum number of nodes. Extensive experiments are performed on twelve real-world networks and eight groups of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity, and more reasonable community numbers when compared with other six algorithms. In addition, LPA-MNI is shown to be more robust than the traditional LPA algorithm.

2017 ◽  
Vol 381 (33) ◽  
pp. 2691-2698 ◽  
Author(s):  
Xian-Kun Zhang ◽  
Jing Ren ◽  
Chen Song ◽  
Jia Jia ◽  
Qian Zhang

2018 ◽  
Vol 32 (25) ◽  
pp. 1850279 ◽  
Author(s):  
Hanzhang Kong ◽  
Qinma Kang ◽  
Chao Liu ◽  
Wenquan Li ◽  
Hong He ◽  
...  

Community detection in complex network analysis is a quite challenging problem spanning many applications in various disciplines such as biology, physics and social network. A large number of methods have been developed for this problem, among which the label propagation algorithm (LPA) has attracted much attention because of its advantages of nearly-linear running time and easy implementation. Nevertheless, the random updating order and tie-breaking strategy in LPA make the algorithm unstable and may even lead to the formation of a monster community. In this paper, an improved LPA called LPA-INTIM is proposed for solving the community detection problem. Firstly, an intimacy matrix is constructed using local topology information for measuring the intimacy between nodes. And then, the node importance is calculated to ensure that nodes are updated in a specific order. Finally, the label influence is evaluated for updating node label during the label propagation process. In addition, we introduce a novel tightness function to improve the stability of the proposed algorithm. By the comparison with the methods presented in the literatures, experimental results on real-world and synthetic networks show the efficiency and effectiveness of our proposed algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 260 ◽  
Author(s):  
Bingyang Huang ◽  
Chaokun Wang ◽  
Binbin Wang

With the enrichment of the entity information in the real world, many networks with attributed nodes are proposed and studied widely. Community detection in these attributed networks is an essential task that aims to find groups where the intra-nodes are much more densely connected than the inter-nodes. However, many existing community detection methods in attributed networks do not distinguish overlapping communities from non-overlapping communities when designing algorithms. In this paper, we propose a novel and accurate algorithm called Node-similarity-based Multi-Label Propagation Algorithm (NMLPA) for detecting overlapping communities in attributed networks. NMLPA first calculates the similarity between nodes and then propagates multiple labels based on the network structure and the node similarity. Moreover, NMLPA uses a pruning strategy to keep the number of labels per node within a suitable range. Extensive experiments conducted on both synthetic and real-world networks show that our new method significantly outperforms state-of-the-art methods.


2015 ◽  
Vol 29 (05) ◽  
pp. 1550029 ◽  
Author(s):  
Xian-Kun Zhang ◽  
Song Fei ◽  
Chen Song ◽  
Xue Tian ◽  
Yang-Yue Ao

Label propagation algorithm (LPA) has been proven to be an extremely fast method for community detection in large complex networks. But an important issue of the algorithm has not yet been properly addressed that random update orders in label propagation process hamper the algorithm robustness of algorithm. We note that when there are multiple maximal labels among a node neighbors' labels, choosing a node' label from which there is a local cycle to the node instead of a random node' label can avoid the labels propagating among communities at random. In this paper, an improved LPA based on local cycles is given. We have evaluated the proposed algorithm on computer-generated networks with planted partition and some real-world networks whose community structure are already known. The result shows that the performance of the proposed approach is even significantly improved.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750162 ◽  
Author(s):  
Tianren Ma ◽  
Zhengyou Xia

Currently, with the rapid development of information technology, the electronic media for social communication is becoming more and more popular. Discovery of communities is a very effective way to understand the properties of complex networks. However, traditional community detection algorithms consider the structural characteristics of a social organization only, with more information about nodes and edges wasted. In the meanwhile, these algorithms do not consider each node on its merits.Label propagation algorithm (LPA) is a near linear time algorithm which aims to find the community in the network. It attracts many scholars owing to its high efficiency. In recent years, there are more improved algorithms that were put forward based on LPA. In this paper, an improved LPA based on random walk and node importance (NILPA) is proposed. Firstly, a list of node importance is obtained through calculation. The nodes in the network are sorted in descending order of importance. On the basis of random walk, a matrix is constructed to measure the similarity of nodes and it avoids the random choice in the LPA. Secondly, a new metric IAS (importance and similarity) is calculated by node importance and similarity matrix, which we can use to avoid the random selection in the original LPA and improve the algorithm stability.Finally, a test in real-world and synthetic networks is given. The result shows that this algorithm has better performance than existing methods in finding community structure.


2019 ◽  
Vol 30 (06) ◽  
pp. 1950049 ◽  
Author(s):  
Mengjia Shen ◽  
Zhixin Ma

Community detection in networks is a very important area of research for revealing the structure and function of networks. Label propagation algorithm (LPA) has been widely used to detect communities in networks because it has the advantages of linear time complexity and is unnecessary to get prior information, such as objective function and the number of communities. However, LPA has the shortcomings of uncertainty and randomness in the label propagation process, which affects the accuracy and stability of the algorithm. In this paper, we propose a novel community detection algorithm, named NGLPA, in which labels are propagated by node gravitation defined by node importance and similarity between nodes. To select the label according to the gravitation between nodes can reduce the randomness of LPA and is consistent with reality. The proposed method is tested on several synthetic and real-world networks with comparative algorithms. The results show that NGLPA can significantly improve the quality of community detection and obtain accurate community structure.


2016 ◽  
Vol 30 (16) ◽  
pp. 1650093 ◽  
Author(s):  
Xian-Kun Zhang ◽  
Chen Song ◽  
Jia Jia ◽  
Zeng-Lei Lu ◽  
Qian Zhang

Community detection based on label propagation algorithm (LPA) has attracted widespread concern because of its high efficiency. But it is difficult to guarantee the accuracy of community detection as the label spreading is random in the algorithm. In response to the problem, an improved LPA based on random walk (RWLPA) is proposed in this paper. Firstly, a matrix measuring similarity among various nodes in the network is obtained through calculation. Secondly, during the process of label propagation, when a node has more than a neighbor label with the highest frequency, not the label of a random neighbor but the label of the neighbor with the highest similarity will be chosen to update. It can avoid label propagating randomly among communities. Finally, we test LPA and the improved LPA in benchmark networks and real-world networks. The results show that the quality of communities discovered by the improved algorithm is improved compared with the traditional algorithm.


2018 ◽  
Vol 29 (02) ◽  
pp. 1850011 ◽  
Author(s):  
Chun Gui ◽  
Ruisheng Zhang ◽  
Zhili Zhao ◽  
Jiaxuan Wei ◽  
Rongjing Hu

In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.


Sign in / Sign up

Export Citation Format

Share Document