scholarly journals The Lack of Consensus of International Contouring Guidelines for the Dorsal Border of the Chest Wall Clinical Target Volume: What is the Impact on Organs at Risk and Relationships to Patterns of Recurrence in the Modern Era?

2019 ◽  
Vol 4 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Phillip M. Pifer ◽  
Robert P. Bice ◽  
Geraldine M. Jacobson ◽  
Kristin Lupinacci ◽  
Sushil Beriwal ◽  
...  
2020 ◽  
Vol 196 (4) ◽  
pp. 368-375
Author(s):  
Hendrik Dapper ◽  
Markus Oechsner ◽  
Stefan Münch ◽  
Christian Diehl ◽  
Jan C. Peeken ◽  
...  

Author(s):  
Chaiyaporn Pintakham ◽  
Ekkasit Tharavichitkul ◽  
Somsak Wanwilairat ◽  
Wannapha Nobnop

Abstract Aim: To evaluate comparative dosimetry of brachytherapy treatment planning between a volume-based plan by computed tomography (CT) and a point-based plan by transabdominal ultrasound (TAUS) in CT datasets for brachytherapy. Materials and methods: From 2019 to 2021, 59 different datasets of CT images were collected from 38 patients treated by intracavitary brachytherapy with tandem ovoid or tandem ring applicators. At that time, TAUS was performed to prevent uterine perforation and to evaluate topography of the cervix during application. In volume-based planning by CT, the target dose was used to keep the dose at 90% of high-risk clinical target volume (HR-CTV), to give a dose of at least 7Gy, while in the point-based plan by TAUS, the target dose was used to keep the minimum dose to eight cervix reference points (measured by TAUS), to give a dose of at least 7Gy. The doses to targets and organs at risk were evaluated and compared between volume-based planning by CT and the point-based plan by TAUS. Results: Of 59 fractions, a tandem ovoid applicator was used in 48 fractions (81·3%). In the volume-based plan by CT, the mean doses to HR-CTV(D90), intermediate-risk clinical target volume (IR-CTV)(D90), bladder(D2cc), rectum(D2cc) and sigmoid colon(D2cc) were 7·0, 3·9, 4·9, 2·9 and 3·3 Gy, respectively, while in the point-based plan by TAUS, the mean doses to HR-CTV(D90), IR-CTV(D90), bladder(D2cc), rectum(D2cc) and sigmoid colon(D2cc) were 8·2, 4·6, 5·9, 3·4 and 3·9 Gy, respectively. The percentages of mean dose differences between TAUS and CT of HR-CTV(D90), IR-CTV(D90), bladder(D2cc), rectum(D2cc) and sigmoid colon(D2cc) were 17·7, 19·5, 20·5, 19·5, 21·3 and 19·8%, respectively. With the target dose to the point-based plan by TAUS (7 Gy to the cervix reference points), this was close to D98 of HR-CTV with a mean percentage of difference of 0·6%. Findings: The point-based plan by TAUS showed higher values to targets and organs at risk than the volume-based plan by CT. With the point-based plan by TAUS, it was close to D98 of HR-CTV.


2018 ◽  
Vol 24 (3) ◽  
pp. 115-119
Author(s):  
Mohammed El Adnani Krabch ◽  
Abdelouahed Chetaine ◽  
Abdelati Nourreddine ◽  
Fatim Zohra Er-Radi ◽  
Laila Baddouh

Abstract The aim of this study was to investigate the impact of heterogeneity on the dose calculation for two algorithms implemented in the TPS “Analytical Anisotropic Algorithm (AAA) and Acuros XB” and validated the use of Acuros XB algorithm in clinical routine. First, we compare the dose calculated by these algorithms and the dose measured at the given point P, which is found after heterogeneity insert. Second, we extend our work on clinical cases that present a complex heterogeneity. By evaluating the impact of the choice of the algorithm on the dose coverage of the tumor, and the dose received by the organs at risk for 20 patients affected by lung cancer. The result of our phantom study showed a good agreement with several studies that showed the superiority of the Acuros XB over the AAA in predicting dose when it concerns heterogeneous media. The treatment plans for 20 lung cancers were calculated by two algorithms AAA and Acuros XB, the results show a statistical significant difference between algorithms for Homogeneity Index and the maximum dose of planning target volume (HI: 0.11±0.01 vs 0.05±0.01 p = 0.04; Dmax: 69.30±3.12 vs 68.51±2.64 p = 0.02). Instead, no statistically significant difference was observed for conformity index CI and mean dose (CI: 0.98±0.18 vs 0.99±0.14 p = 0.33; Dmean: 66.3±0.65 vs 66.10 ±0.61 p = 0.54). For organs at risk, the maximum dose for spinal cord, mean dose and D37 % of lung minus GTV (dose receiving 37% of lung volume) were found to be lower for AAA plans than Acuros XB and the differences were statistically significant (p<0.05). For the heart D33% and D67% were found to be higher for AAA plans than Acuros XB and the differences were statistically significant (p<0.05), but No difference was observed for D100% of the heart. The use of the AXB algorithm is suitable in the case of presence of heterogeneity, because it allows to have a better accuracy close to the Monte Carlo calculation.


Sign in / Sign up

Export Citation Format

Share Document