Model-free fractional-order sliding mode control for an active vehicle suspension system

2018 ◽  
Vol 115 ◽  
pp. 452-461 ◽  
Author(s):  
H.P. Wang ◽  
Ghazally I.Y. Mustafa ◽  
Y. Tian
Algorithms ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 10 ◽  
Author(s):  
Yumna Shahid ◽  
Minxiang Wei

This paper deals with the active vibration control of a quarter-vehicle suspension system. Damping control methods investigated in this paper are: higher-order sliding mode control (HOSMC) based on super twisting algorithm (STA), first-order sliding mode control (FOSMC), integral sliding mode control (ISMC), proportional integral derivative (PID), linear quadratic regulator (LQR) and passive suspension system. Performance comparison of different active controllers are analyzed in terms of vertical displacement, suspension travel and wheel deflection. The theoretical, quantitative and qualitative analysis verify that the STA-based HOSMC exhibits better performance as well as negate the undesired disturbances with respect to FOSMC, ISMC, PID, LQR and passive suspension system. Furthermore, it is also robust to intrinsic bounded uncertain dynamics of the model.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2424
Author(s):  
Yong Yang ◽  
Yunbing Yan ◽  
Xiaowei Xu

It is difficult to model and determine the parameters of the steer-by-wire (SBW) system accurately, and the perturbation is variable with complex and changeable tire–road conditions. In order to improve the control performance of the vehicle SBW system, an adaptive fast super-twisting sliding mode control (AFST-SMC) scheme with time-delay estimation (TDE) is proposed. The proposed scheme uses TDE to acquire the lumped dynamics in a simple way and establishes a practical model-free structure. Then, a fractional order (FO) sliding mode surface and a fast super-twisting sliding mode control structure were designed on the basic super-twisting sliding mode to ensure fast convergence and high control accuracy. Since the uncertain boundary information of the actual system is unknown, a novel adaptive algorithm is proposed to regulate the control gain based on the control errors. Theoretical analysis concerning system stability is given based on the Lyapunov theory. Finally, the effectiveness of the method is verified through comparative experiments. The results show that the proposed TDE-AFST-FOSMC control scheme has the advantages of model-free, fast response and high accuracy.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Peng Gao ◽  
Xiaodong Lv ◽  
Huimin Ouyang ◽  
Lei Mei ◽  
Guangming Zhang

This study proposes a novel model-free intelligent proportional-integral supertwisting nonlinear fractional-order sliding mode control (MF-iPI-ST-NLFOSMC) strategy for permanent magnet synchronous motor (PMSM) speed regulation system. First of all, a model independent intelligent proportional-integral (iPI) control strategy is adopted for the motor speed regulation system. Next, a novel model-free supertwisting nonlinear fractional-order sliding mode control (ST-NLFOSMC) strategy is constructed based on the ultralocal model of PMSM. Meanwhile, a linear extended state observer (LESO) is used to estimate the unknown terms of the ultralocal model. Then, this study presents the novel hybrid MF-iPI-ST-NLFOSMC strategy which integrates the model-free ST-NLFOSMC strategy, the model-free iPI control strategy, and the LESO. Moreover, the stability of the proposed hybrid MF-iPI-ST-NLFOSMC strategy is proved by the Lyapunov stability theorem and fractional-order theory. Finally, the simulations and comparison results verify that the hybrid MF-iPI-ST-NLFOSMC strategy proposed in this paper has better performance than the other model-free controllers in terms of the static characteristic, dynamic characteristic, and robustness.


Sign in / Sign up

Export Citation Format

Share Document