Cross-diffusion based filtering as pre-processing step for remote sensing procedures

2020 ◽  
Vol 140 ◽  
pp. 102751
Author(s):  
Eduardo Cuesta ◽  
Carmen Quintano ◽  
Alfonso Fernández–Manso
2021 ◽  
Vol 13 (3) ◽  
pp. 357 ◽  
Author(s):  
Chao Wang ◽  
Yan Zhang ◽  
Xiaohui Chen ◽  
Hao Jiang ◽  
Mithun Mukherjee ◽  
...  

High-resolution remote sensing (HRRS) images, when used for building detection, play a key role in urban planning and other fields. Compared with the deep learning methods, the method based on morphological attribute profiles (MAPs) exhibits good performance in the absence of massive annotated samples. MAPs have been proven to have a strong ability for extracting detailed characterizations of buildings with multiple attributes and scales. So far, a great deal of attention has been paid to this application. Nevertheless, the constraints of rational selection of attribute scales and evidence conflicts between attributes should be overcome, so as to establish reliable unsupervised detection models. To this end, this research proposes a joint optimization and fusion building detection method for MAPs. In the pre-processing step, the set of candidate building objects are extracted by image segmentation and a set of discriminant rules. Second, the differential profiles of MAPs are screened by using a genetic algorithm and a cross-probability adaptive selection strategy is proposed; on this basis, an unsupervised decision fusion framework is established by constructing a novel statistics-space building index (SSBI). Finally, the automated detection of buildings is realized. We show that the proposed method is significantly better than the state-of-the-art methods on HRRS images with different groups of different regions and different sensors, and overall accuracy (OA) of our proposed method is more than 91.9%.


In the process of automatic trees recognition and tracking, image target is captured by RGB camera mounted on a UAV, in processing step image captured is subjected to threshold and extract selected information, This techniques may be applied to recognize objects with different shapes and sizes. In the case of remote sensing vegetation, the image usually contains multiple connected areas or overlapped trees; the proposed system uses the shape characteristics of the image target to self-identify the suspicious overlapped features. This technique allows distinguish, analyze and detect different features in images by assigning a unique label to all pixels that refers to the same entity or object. In the process of automatically recognizing and tracking the target of an image, it is first segmented and extracted. The resulting binary image usually contains several connected regions. The system uses the shape characteristics of the target in the image to automatically identify the suspected overlapped trees. Therefore, it is necessary to detect and evaluate each connected area block separately, in this paper, the improved FPGA-specific rapid marking algorithm is used to detect and extract each connected domain.


2018 ◽  
Vol 4 (4) ◽  
pp. 7
Author(s):  
Rakesh Tripathi ◽  
Neelesh Gupta

Information extraction is a very challenging task because remote sensing images are very complicated and can be influenced by many factors. The information we can derive from a remote sensing image mostly depends on the image segmentation results. Image segmentation is an important processing step in most image, video and computer vision applications. Extensive research has been done in creating many different approaches and algorithms for image segmentation. Labeling different parts of the image has been a challenging aspect of image processing. Segmentation is considered as one of the main steps in image processing. It divides a digital image into multiple regions in order to analyze them. It is also used to distinguish different objects in the image. Several image segmentation techniques have been developed by the researchers in order to make images smooth and easy to evaluate. Various algorithms for automating the segmentation process have been proposed, tested and evaluated to find the most ideal algorithm to be used for different types of images. In this paper a review of basic image segmentation techniques of satellite images is presented.


Author(s):  
L. Sun ◽  
X. S. Gan

Abstract. The noise will blur the key information of the remote sensing image, such as edge texture and important feature information, which will result in the loss of key information contained in the remote sensing image, resulting in the degradation of the overall quality of the image, which will bring difficulties to the interpretation work. Therefore, in order to obtain higher precision, signal-to-noise ratio and improve the quality of remote sensing image, denoising the remote sensing image containing noise is a crucial step and processing step for image remote sensing image application.In this paper, the ICA wavelet analysis algorithm is applied to the application of real-time remote sensing image denoising. A series of pre-processing procedures such as control point correction, image fusion and image mosaic are carried out on the Asian sub-level remote sensing image, and the signal-to-noise ratio of the remote sensing image is adopted. (SNR/dB) and mean square error (RMSE) verify the image quality after denoising.


Author(s):  
Karl F. Warnick ◽  
Rob Maaskant ◽  
Marianna V. Ivashina ◽  
David B. Davidson ◽  
Brian D. Jeffs

Author(s):  
Dimitris Manolakis ◽  
Ronald Lockwood ◽  
Thomas Cooley

Sign in / Sign up

Export Citation Format

Share Document