scholarly journals An analytical solution for predicting the transient seepage from a subsurface drainage system

2016 ◽  
Vol 91 ◽  
pp. 1-10 ◽  
Author(s):  
Pei Xin ◽  
Han-Cheng Dan ◽  
Tingzhang Zhou ◽  
Chunhui Lu ◽  
Jun Kong ◽  
...  
2018 ◽  
Vol 203 ◽  
pp. 07005 ◽  
Author(s):  
Abdurrasheed Sa'id Abdurrasheed ◽  
Khamaruzaman Wan Yusof ◽  
Husna Bt Takaijudin ◽  
Aminuddin Ab. Ghani ◽  
Muhammad Mujahid Muhammad ◽  
...  

Subsurface drainage modules are important components of the Bio-ecological Drainage System (BIOECODS) which is a system designed to manage stormwater quantity and quality using constructed grass swales, subsurface modules, dry and wet ponds. BIOECODS is gradually gaining attention as one of the most ecologically sustainable solutions to the frequent flash floods in Malaysia and the rest of the world with a focus on the impact of the subsurface modules to the effectiveness of the system. Nearly two decades of post-construction research in the BIOECODS technology, there is need to review findings and areas of improvement in the system. Thus, this study highlighted the key advances and challenges in these subsurface drainage modules through an extensive review of related literature. From the study, more work is required on the hydraulic characteristics, flow attenuation and direct validation methods between field, laboratory, and numerical data. Also, there is concern over the loss of efficiency during the design life especially the infiltration capacity of the module, the state of the geotextile and hydronet over time. It is recommended for the sake of higher performance, that there should be an onsite methodology to assess the permeability, rate of clogging and condition of the geotextile as well as the hydronet over time.


Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 174
Author(s):  
Federica Cotecchia ◽  
Rossella Petti ◽  
Dario Milella ◽  
Piernicola Lollino

For those slopes where the piezometric regime acts as internal landslide predisposing factor, drainage may represent a more effective mitigation measure than other structural interventions. However, drainage trenches have been generally considered as mitigation measure solely for shallow landslides. More recently, instead, some authors show that the variation in piezometric conditions at large depth is not negligible when medium depth drainage trenches are involved. The paper presents the results of finite element analyses of the transient seepage induced by the installation of systems of drainage trenches of different geometric parameters, and the effect of the drainage system on the stability factor of the slip surface, through 2D limit equilibrium analyses. The pilot region is the Daunia Apennines, where field studies have led to recognize for most of the landslides a “bowl-shaped” slip surface; the results accounting for the Fontana Monte slope at Volturino (Italy), selected as prototype landslide in the assessment of the stabilization efficacy of deep drainage trench systems, is discussed in the following. The study aims at providing indications about the design of the drainage trenches to reduce the pore water pressures on a deep slip surface of such type.


2019 ◽  
Vol 145 (3) ◽  
pp. 04019028 ◽  
Author(s):  
Shubham A. Kalore ◽  
G. L. Sivakumar Babu ◽  
Rajib B. Mallick

2012 ◽  
Vol 518-523 ◽  
pp. 98-101
Author(s):  
Ting Ting Chang ◽  
Xiao Hou Shao ◽  
Jie Zhang ◽  
Long Wang

The secondary salinized greenhouse soil was provided with subsurface pipe drainage system with drainage spacing 6 m and drain depth 0.4m to study the movement of salt and water. The field investigations indicated that the resalination rates of the surface soil with subsurface drainage system were lower than those with non-drained system (CK) in an irrigation circle of the crop. The resalination rate of the surface soil right above the drainage tubes (T1) was significantly lower than that between the two drainage tubes (T2). At the 5th day after irrigation, the soil volumetric moisture contents of different treatments were significantly decreased and the resalination of surface soil were obvious. The results showed a considerable increase of resalination rate after irrigation that was varied at the 5th day as following sequence: CK(10.6%) > T2(8%) > T1(7%).


2001 ◽  
Vol 37 (3) ◽  
pp. 417-427 ◽  
Author(s):  
K. N. Singh ◽  
D. P. Sharma

A field experiment to evaluate the effect of N, K and time of K application on the growth, yield and chemical composition of wheat (Triticum aestivum) grown in saline soil with subsurface drainage, was conducted at the Central Soil Salinity Research Institute, Karnal Research Farm, Sampla during the winter seasons of 1992–93 to 1994–95. The treatments consisted of three levels each of N (0, 120 and 150 kg ha−1) and K (0, 50 and 75 kg ha−1) with the K applied at two different times (full basal and half basal + half top dressed 30 d after sowing). The growth characteristics (plant height, number of tillers and dry matter weight m−2 recorded at 60 d after sowing) and yield-attributing parameters (number of productive tillers and length of spikes) increased significantly with increasing N levels up to 150 kg ha−1 and K levels up to 50 kg ha−1. Similar responses of N and K were also observed on grain and straw yields of wheat. Time of K application had no significant effect on growth and yields. The N concentration in grain and straw increased significantly with the application of 120 kg N ha−1 over control. Application of K had no significant effect on the concentration of N in grain and straw. The K concentration in grain and straw increased significantly due to the application of 50 kg K ha−1 but it was unaffected by the time of K application. Application of K increased the efficiency of utilization of applied N. A trend towards declining salinity of the soil profile due to leaching through the subsurface drainage system was observed from 1992–93 to 1994–95. For three consecutive years the status of available N and K in surface soil (0–30 cm depth) increased due to their respective applications. This field study indicates that 150 kg N and 50 kg K ha−1 should be applied under canal-irrigated conditions to get the sustainable and optimum yield of wheat in saline soils.


Sign in / Sign up

Export Citation Format

Share Document